曲线[tex=2.214x1.214]+uhjmb2E5xVh5Jr8m9fmgA==[/tex]与通过原点的切线和[tex=1.286x1.214]1BdB4jhIiorkUZVSTcEOPA==[/tex]轴围成图形的面积为[img=235x177]179b3dbb8d4b2f9.png[/img]
未知类型:{'options': ['[tex=0.786x2.143]ldJ4snf9/WAVHvfy9S9Dlw==[/tex]', '[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]', '[tex=2.214x2.143]2yQA3W53T3MxMvIAEzRTX6Lqr02Jg9jkztmwG/YcUT0=[/tex]', '[tex=2.214x2.143]/b+iAFd4qnzMpYow9I1x4g==[/tex]'], 'type': 102}
未知类型:{'options': ['[tex=0.786x2.143]ldJ4snf9/WAVHvfy9S9Dlw==[/tex]', '[tex=0.5x0.786]rCTQ93hYjIOF3vc8FasIqg==[/tex]', '[tex=2.214x2.143]2yQA3W53T3MxMvIAEzRTX6Lqr02Jg9jkztmwG/YcUT0=[/tex]', '[tex=2.214x2.143]/b+iAFd4qnzMpYow9I1x4g==[/tex]'], 'type': 102}
举一反三
- 以4,9,1为为插值节点,求\(\sqrt x \)的lagrange的插值多项式 A: \( {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) B: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) + {1 \over {24}}(x - 4)(x - 9)\) C: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x +1) + {1 \over {24}}(x - 4)(x - 9)\) D: \( - {2 \over {15}}(x - 9)(x - 1) + {3 \over {40}}(x - 4)(x - 1) - {1 \over {24}}(x - 4)(x - 9)\)
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 9判别下列函数是否是周期函数,若是周期函数,求其周期 :(1) [tex=8.357x1.357]jijpvC8Aw74QOOOJh5Va05j3PtA64Pms1Q5qDGlqeN4=[/tex](2) [tex=5.643x1.357]TG5DUF3HrCbhIJWDEcp5Pj9u3e2PUgpbN4NJQ6DZXLw=[/tex](3) [tex=5.714x1.357]SBxtvKszj8+jJcycMEKn5vqfhi5GLWqH4Gac9QRbIHc=[/tex](4) [tex=6.929x1.357]NZ5EVFRfE4pFsgkbEOhFkNg5/qZx8geAT5eL+yzbq1Q=[/tex]
- \(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=