连续地掷一枚骰子80次,求点数之和超过300的概率.
A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$
B: $\Phi(\frac{20}{\sqrt{700/3}})$
C: $1-\Phi(\frac{20}{\sqrt{700/3}})$
D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$
B: $\Phi(\frac{20}{\sqrt{700/3}})$
C: $1-\Phi(\frac{20}{\sqrt{700/3}})$
D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
举一反三
- 题目包含多个选项,但学生只能选择一个答案。1、连续地掷一枚骰子80次,求点数之和超过300的概率. A: $1-\Phi(\frac{296.5}{\sqrt{35/12}})$ B: $\Phi(\frac{20}{\sqrt{700/3}})$ C: $1-\Phi(\frac{20}{\sqrt{700/3}})$ D: $\Phi(\frac{296.5}{\sqrt{35/12}})$
- (2)该餐厅每天的营业额在平均营业额 ±760元内的概率 A: $1-2\Phi(-\frac{760}{800/\sqrt{3}})$ B: $1-2\Phi(\frac{760}{800/\sqrt{3}})$ C: $2\Phi(\frac{760}{800/\sqrt{3}})$ D: $2\Phi(-\frac{760}{800/\sqrt{3}})$
- 内接于半径为a的球且体积最大的长方体的长、宽、高分别为( )。 A: \( (\frac { { a}} { { \sqrt 3 }},\frac { { a}} { { \sqrt 3 }},\frac { { a}} { { \sqrt 3 }}) \) B: \( (\frac { { 2a}} { { \sqrt 2 }},\frac { { 2a}} { { \sqrt 2 }},\frac { { 2a}} { { \sqrt 2 }}) \) C: \( (\frac { { a}} { { \sqrt 3 }},\frac { { a}} { { \sqrt 3 }},\frac { { a}} { { \sqrt 3 }}) \) D: \( (\frac { { 2a}} { { \sqrt 3 }},\frac { { 2a}} { { \sqrt 3 }},\frac { { 2a}} { { \sqrt 3 }}) \)
- \(已知L是抛物线y=x^2上点O(0,0)与点A(1,1)之间的一段弧,则\int_{L}\sqrt{y}ds=(\,)\) A: \[\frac{1}{12}(5\sqrt{5}-1)\] B: \[\frac{1}{12}(3\sqrt{3}-1)\] C: \[\frac{1}{13}(5\sqrt{5}-1)\] D: \[\frac{1}{13}(3\sqrt{3}-1)\]
- Solve $\int_{-\frac{1}{2}}^1{1-x^2}dx=$? A: $\frac{\pi}{3}+\frac{\sqrt{3}}{8}$. B: $\frac{\pi}{2}$. C: $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$. D: $\frac{\pi}{4}$.