某修理店只有一个修理工人,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。如服务时间服从正态分布,数学期望值仍是 6 分钟,方差 [tex=3.286x1.5]E1t1egrc1Xy3GVU6ZgnGsVbBDGKADxAzkHelLVNPB94=[/tex],求 店内顾客数的期望值。
举一反三
- 某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。求:店内至少有 1 个顾客的概率。
- 某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。求:必须在店内消耗 15 分钟以上的概率。
- 某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。如店内已有 3 个顾客,那么后来的顾客即不再排队,试求:各运行指标[tex=5.429x1.286]T1/6oV3eM21+FEXN3s19mmsp4hXuU6VLddwd375lQZw=[/tex]
- 某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。求:等待服务的顾客平均数。
- 某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时 4 人,修理时间服从负指数分布,平均需 6 分钟。如店内已有 3 个顾客,那么后来的顾客即不再排队,试求:店内空闲的概率。