斜边的平方一定等于两条直角边的平方和。
×
举一反三
内容
- 0
在黎曼几何中,以下哪个结论是成立的_________。 A: 三角形的内角和小于180°。 B: 三角形的内角和大于180°。 C: 三角形的内角和等于180°。 D: 在一直角三角形中,两个直角边长度的平方和大于斜边长度的平方。
- 1
智慧职教: 勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。 勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。 如果直角三角形的一条直角边的长是 5cm,斜边的长为 13cm,那么它的另一条直角边的长是( )
- 2
在直角三角形中,两条直角边分别为3和4,则斜边长度为( )
- 3
在方差分析的平方和分解式中,总离差平方和等于( )离差平方和加( )离差平方和。
- 4
布卢姆认识目标分类(修订版)把知识分为事实性知识、概念性知识、程序性知识和元认知知识四类。下列不属于程序性知识的是( ) A: 苹果是红色的 B: 数学中的四则运算混合法则 C: 一个完整的句子由主、谓、宾语组成 D: 直角三角形的两条直角边长度的平方和等于斜边长度的平方