已知n+1个正数:Wi(1<;=i<;=n)和M,要找出Wi的和数是M的所有子集。其解可以表示为n元组(x1,x2,…,xn),xi∈{0,1},(1<;=i<;=n)。即若选择Wi,则xi=1,否则,xi=0。此解空间的状态空间树有()个节点。
A: 2n-1
B: 2n-1
C: 2n
D: 2n
A: 2n-1
B: 2n-1
C: 2n
D: 2n
举一反三
- 将\(f(x) = {1 \over {1 + {x^2}}}\)展开成\(x\)的幂级数为( )。 A: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - \infty < x < + \infty )\) B: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1< x < 1)\) C: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { {( - 1)}^n}{x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\) D: \({1 \over {1 + {x^2}}} = \sum\limits_{n = 0}^\infty { { x^{2n}}} \matrix{ {} & {} \cr } ( - 1 < x < 1)\)
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 在下列六组量子数中,正确的是① n=3,l= 1,m=-1 ② n = 3,l= 0,m = 0③ n = 2,l= 2 ,m=-1 ④ n = 2, l = 1 ,m = 0 ⑤ n = 2,l = 0,m =-1 ⑥ n= 2,l = 3 , m= 2 A: (1),(2),(4) B: (2),(4),(6) C: (1),(2),(3) D: (1),(3),(5)
- 下列量子数合理的是? n = 1,l = 0,m = 0|n = l,l = 1,m = 1|;n = 2,l = 0,m = 1 |n = 2,l = 2,m = 2