与直线[img=93x71]1803c234317de2e.png[/img]及直线[img=145x43]1803c23439c1443.png[/img]平行,且过原点的平面与方程为
A: x-y+z=0
B: x+y+z=0
C: x-y-z=0
D: x+y-z=0
E: x+2y+z=0
F: x-2y+z=0
G: x-2y-z=0
H: x+2y-z=0
I: x+2y-2z=0
J: x-2y-2z=0
A: x-y+z=0
B: x+y+z=0
C: x-y-z=0
D: x+y-z=0
E: x+2y+z=0
F: x-2y+z=0
G: x-2y-z=0
H: x+2y-z=0
I: x+2y-2z=0
J: x-2y-2z=0
举一反三
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 若位移分量为如下所示的函数,其中α为常数[img=461x57]1803b389b0073f8.png[/img]则沿着x, y, z方向的正应变分别为: A: -αy, αz, 2αx B: -αz, αx, -2αy C: 0, 0, 0 D: -αx, αy, -2αz
- int x=1, y=2, z=0; z= x > y ? x+y : x; 则z= ( )
- 设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
- 设函数z=z(x,y)由方程F(y/x,z/x)=0确定,其中F为可微函数,且F<sub>2</sub>′≠0,则x∂z/∂x+y∂z/∂y=()。 A: x B: z C: -x D: -z