举一反三
- 证明:矩阵的[tex=0.929x1.071]GF6lPkbwM1/sKcTXI74B5g==[/tex]型初等行变换(即,两行互换)可以通过一些[tex=0.929x1.071]buZKswv8GSg4ZQySlQudzA==[/tex]型与[tex=0.929x1.071]9/ixLDjuSXaJpaOE7n+RlQ==[/tex]型初等行变换实现.
- 用初等行变换将下列矩阵化为行阶梯型矩阵,并求其秩。[tex=8.429x5.929]dNSDn9BXm1mpm241IkjqDK1acarp7uEXzYmuVtT7iZZFMMQad53UarVdZOO9LaZclqqiQ+Dr+Zs3UUZe2HPgYmFX/TPm1+WolZFZGBdtfN6KHLQE7oP1GphTOG94oqmPX7zTVY8d97MqHXe0iKz5nomJhQqqkQmREGpHhuJgR1g=[/tex]
- 用矩阵的初等行变换将矩阵[tex=11.0x3.643]C3i3DfkQVo2pOvnj2q0JK8uICAslAc7H+uBU3eOkL5pCh0WRibyvhHMij2q4oiCh39plNQtM0tbVoTgWEIcmp+mHwbWEs3+CB80KUDM4ZsK939VlOjBlhOojGwiWdWFZKz7Z0OrHJSXDoUsh0bza4A==[/tex]化为阶梯形矩阵。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=3.214x1.357]iagYNk+QmArrUC5iF4MQ2w==[/tex]证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],那么:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以表示成[tex=0.929x1.071]502A3kM9YE+9j/2noEqw2g==[/tex]型初等矩阵[tex=3.929x1.357]oHgxo/VJI2syKm7RzHjvnQ==[/tex]的乘积.
- 用初等行变换将下列矩阵化为行最简形矩阵:[tex=7.857x4.786]jcCMHflCR8OS9TosV6N5vE+ILInEdrNZmLPdu5yGc58x2ThFgeZlIoX9A7qb/G3BsPqADtaTucfoTIvayBE9mmX15MEqtmh5xctTqssz6rNbFi75UX3kKIcBpUtwLNzB[/tex].
内容
- 0
利用矩阵的初等行变换将矩阵 [tex=6.5x3.643]NeoTBlf1CmkUoMf07Si5dAD8ZbdksGO0fA9hs2XXNUaQJ6hik+QdSdzXXL7Do2ZtpnsSmK0ZLOe+TqTc8cQQL0vYoBA6XmfXeaLwdFf/3Cv4X/cEuPU+mDvs22bLGJ6N[/tex] 化为行最简矩阵.
- 1
利用矩阵的初等行变换将矩阵 [tex=8.214x3.929]NeoTBlf1CmkUoMf07Si5dEcn2TG6zebvt/5RMBtlBueOLdtecTu8sHIwlVvCx5xG1F3wf+1E2WFPxgaat9EEH3oOxiLDDIWQ3X6tmhQVoC+upxaIXeHCGW7yzZR/s3d3[/tex] 化为行最简矩阵.
- 2
用初等行变换求下列矩阵的的逆矩阵[tex=4.5x2.786]jcCMHflCR8OS9TosV6N5vB0YNYCYNNOTmW+/Xyaeog6rA0KugjnCjJY4NVvcov0ChJerMdjoodQRv4TpwwBfWw==[/tex];
- 3
用初等行变换求矩阵的逆:[tex=5.714x3.5]De166nmeTkb4C/83+ZZH22dbEjNKrnjmBwm3Jdmz0JML6nfyM/ZKF88uPi11IaLL8LZKvSsUZfWX+2Ur3zXuLOHTRCdjXg9pIa5p6FrrHkwt50sAssx/Pxrmf5KzIrOp[/tex]。
- 4
用初等行变换把下列矩阵化为行最简形矩阵.[tex=7.429x3.643]sqT5ECWErx9+sgJ2TkxNkeXrph9cFwwkrb/Ve0fwplRwoOWSteVt0MQptyeDl7tabfUIP1Ppbv+4YDZM3alBASLCdpsfhgsZEOh/LzWOnQU=[/tex].