证明:矩阵的[tex=0.929x1.071]ye7wVa6THCKv06rO3baM9A==[/tex]型初等行变换(即两行变换)可以通过一些[tex=0.929x1.071]502A3kM9YE+9j/2noEqw2g==[/tex]型与[tex=0.929x1.071]vxzTVGpzraNdAfUuV99UxQ==[/tex]型初等行变换实现.
举一反三
- 证明:矩阵的[tex=0.929x1.071]GF6lPkbwM1/sKcTXI74B5g==[/tex]型初等行变换(即,两行互换)可以通过一些[tex=0.929x1.071]buZKswv8GSg4ZQySlQudzA==[/tex]型与[tex=0.929x1.071]9/ixLDjuSXaJpaOE7n+RlQ==[/tex]型初等行变换实现.
- 用初等行变换将下列矩阵化为行阶梯型矩阵,并求其秩。[tex=8.429x5.929]dNSDn9BXm1mpm241IkjqDK1acarp7uEXzYmuVtT7iZZFMMQad53UarVdZOO9LaZclqqiQ+Dr+Zs3UUZe2HPgYmFX/TPm1+WolZFZGBdtfN6KHLQE7oP1GphTOG94oqmPX7zTVY8d97MqHXe0iKz5nomJhQqqkQmREGpHhuJgR1g=[/tex]
- 用矩阵的初等行变换将矩阵[tex=11.0x3.643]C3i3DfkQVo2pOvnj2q0JK8uICAslAc7H+uBU3eOkL5pCh0WRibyvhHMij2q4oiCh39plNQtM0tbVoTgWEIcmp+mHwbWEs3+CB80KUDM4ZsK939VlOjBlhOojGwiWdWFZKz7Z0OrHJSXDoUsh0bza4A==[/tex]化为阶梯形矩阵。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级矩阵[tex=3.214x1.357]iagYNk+QmArrUC5iF4MQ2w==[/tex]证明:如果[tex=2.643x1.357]xnNlsIp2wAAq+OkAnU/oIQ==[/tex],那么:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]可以表示成[tex=0.929x1.071]502A3kM9YE+9j/2noEqw2g==[/tex]型初等矩阵[tex=3.929x1.357]oHgxo/VJI2syKm7RzHjvnQ==[/tex]的乘积.
- 用初等行变换将下列矩阵化为行最简形矩阵:[tex=7.857x4.786]jcCMHflCR8OS9TosV6N5vE+ILInEdrNZmLPdu5yGc58x2ThFgeZlIoX9A7qb/G3BsPqADtaTucfoTIvayBE9mmX15MEqtmh5xctTqssz6rNbFi75UX3kKIcBpUtwLNzB[/tex].