Which of the following is true?
A: Every bounded sequence is convergent.
B: An increasing sequence, which is bounded above, must converge to its least upper bound.
C: Since [img=126x25]1802dde7cf4d960.png[/img], [img=56x20]1802dde7d7ba725.png[/img] , by Pinching theorem, we have [img=115x33]1802dde7e0000c5.png[/img] for some [img=84x25]1802dde7e9df8c6.png[/img].
D: A sequence can be both convergent and divergent.
A: Every bounded sequence is convergent.
B: An increasing sequence, which is bounded above, must converge to its least upper bound.
C: Since [img=126x25]1802dde7cf4d960.png[/img], [img=56x20]1802dde7d7ba725.png[/img] , by Pinching theorem, we have [img=115x33]1802dde7e0000c5.png[/img] for some [img=84x25]1802dde7e9df8c6.png[/img].
D: A sequence can be both convergent and divergent.
举一反三
- Which of the following is false? A: If a set of real numbers is bounded above, then it must have a least upper bound [img=53x20]1802dde7ae54586.png[/img]. B: If a set of real numbers has a least upper bound [img=53x20]1802dde7ae54586.png[/img], then it must be bounded above. C: If a set of rational numbers is bounded above, then it must have a least upper bound [img=54x22]1802dde7bf41b49.png[/img]. D: If a set of rational numbers has a least upper bound [img=54x22]1802dde7bf41b49.png[/img], then it must be bounded above.
- 设X,Y为两个随机变量,且[img=179x25]1803395d555effc.png[/img] , [img=226x25]1803395d61f1a43.png[/img] ,则[img=143x25]1803395d6f00057.png[/img]= ( ). A: 1/7 B: 3/7 C: 4/7 D: 5/7
- X,Y相互独立,X服从参数为2的泊松分布,Y服从[img=54x25]1803b4181e39f0c.png[/img],则[img=84x25]1803b4182602fd0.png[/img]与[img=86x25]1803b4182e0ab99.png[/img]分别为 A: -1,-7 B: 1, -7 C: 1,17 D: -1, 17
- 以下程序的输出结果是()。[img=253x210]17e0b2714526573.png[/img] A: 8 7 6 B: 8 6 5 C: 9 8 7 D: 7 6 5
- 7.Let [img=199x61]1802dde9690822d.png[/img] .Does [img=62x33]1802dde9710faf4.png[/img]exists ? A: (A) Yes, since [img=196x27]1802dde97ac0dbf.png[/img] for any [img=46x20]1802dde9831551a.png[/img], by pinching theorem, [img=62x33]1802dde98b6a13d.png[/img] exists. B: (B) Yes, since [img=180x27]1802dde995267d8.png[/img] for any [img=46x20]1802dde9831551a.png[/img], by pinching theorem, [img=62x33]1802dde98b6a13d.png[/img] exists. C: (C) No, since there exists some [img=46x20]1802dde9831551a.png[/img] such that [img=196x27]1802dde9b73b240.png[/img] and some [img=46x20]1802dde9831551a.png[/img] such that [img=196x27]1802dde97ac0dbf.png[/img], we can't apply pinching theorem. D: (D) None of above explanation is correct.