已知`\vec\alpha _1,\vec\alpha _2,\vec\beta _1,\vec\beta _2`是4维列向量,设`\| alpha _1,alpha _2,alpha _3,beta | = a,| beta + gamma ,alpha _3,alpha _2,alpha _1| = b`,则`\| 2\gamma ,alpha _1,alpha _2,alpha _3 | = ` ( )
A: \[(a - b)\]
B: \[2(a - b)\]
C: \[(a + b)\]
D: \[2(a + b)\]
A: \[(a - b)\]
B: \[2(a - b)\]
C: \[(a + b)\]
D: \[2(a + b)\]
举一反三
- 已知`\ alpha _1,alpha _2,alpha _3,beta , gamma `均为4维列向量,且`\| gamma ,alpha _1,alpha _2,alpha _3 | = n,| alpha _1,beta + gamma ,alpha _2,alpha _3| = m`,则`\| alpha _1,alpha _2,alpha _3,3beta |` ( ) </p></p>
- 若`\alpha _1,alpha _2,alpha _3,beta _1,beta _2`都是四维列向量, 且四阶行列式`\| alpha _1,alpha _2,alpha _3,beta_1 | = m,| alpha _1,alpha _2,beta_2,alpha _3 | = n` 则`\| 2alpha _1,2alpha _2,2alpha _3,2(beta_1+beta_2) | =` ( ) A: `\ (m+n)` B: `\ 8(m-n)` C: `\ 8(m+n)` D: `\ (m-n)`
- 设\(3 \times 4\)阶矩阵\(A\)的秩为1,\(\alpha ,\beta ,\gamma \)是齐次线性方程组\(Ax=0\)的三个线性无关的解向量,则方程组的基础解系为( ) A: \(\alpha ,\beta ,\alpha + \beta \) B: \(\alpha ,\alpha + \beta ,\alpha + \beta + \gamma \) C: \(\gamma ,\beta ,\gamma - \beta \) D: \(\alpha - \beta ,\gamma - \beta ,\gamma - \alpha \)
- 设向量组\( {\alpha _1},{\alpha _2},{\alpha _3} \)线性无关,则下列向量组中线性无关的是( ) A: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _3} - {\alpha _1} \) B: \( {\alpha _1}{\rm{ + }}{\alpha _2},{\alpha _2}{\rm{ + }}{\alpha _3},{\alpha _1}{\rm{ + 2}}{\alpha _2}{\rm{ + }}{\alpha _3} \) C: \( {\alpha _1}{\rm{ + }}2{\alpha _2},2{\alpha _2}{\rm{ + }}3{\alpha _3},3{\alpha _3}{\rm{ + }}{\alpha _1} \) D: \( {\alpha _1}{\rm{ + }}{\alpha _2}{\rm{ + }}{\alpha _3},2{\alpha _1} - 3{\alpha _2}{\rm{ + }}22{\alpha _3},3{\alpha _1}{\rm{ + 5}}{\alpha _2} - 5{\alpha _3} \)
- 设`n\times 3`的矩阵`A`的秩为3,则下列向量组线性无关的是( ) A: `\alpha _1 + \alpha _2,\alpha _2 + \alpha _3,\alpha _3 + \alpha _1`; B: `\alpha _2 - \alpha _1,\alpha _3 - \alpha _2,\alpha _1 - \alpha _3`; C: `\alpha _1 + \alpha _2 + \alpha _3,\alpha _3 - \alpha _2, - \alpha _1 - 2\alpha _3`; D: `2\alpha _2 - \alpha _1,2\alpha _3 - \alpha _2,\alpha _1 - \alpha _3`.