如果一个模型在训练集上正确率为99%,测试集上正确率为60%,则下面哪种处理方法是错误的?( )
A: 增加模型复杂度
B: 加入正则化项
C: 减少模型复杂度
D: 增加训练样本数量
A: 增加模型复杂度
B: 加入正则化项
C: 减少模型复杂度
D: 增加训练样本数量
举一反三
- 如果一个模型在训练集上正确率为99%,测试集上正确率为60%。我们应该怎么做()。 A: 加入正则化项 B: 增加训练样本数量 C: 增加模型复杂度 D: 减少模型复杂度
- 点击率预测是一个正负样本不平衡问题(例如 99% 的没有点击,只有 1% 点击)。假如在这个非平衡的数据集上建立一个模型,得到训练样本的正确率是 99%,模型正确率很高,不需要优化模型了
- 下面哪句话是正确的( )选项:A:机器学习模型的精准度越高,则模型的性能越好B:增加模型的复杂度,总能减小测试样本误差C:增加模型的复杂度,总能减小训练样本误差D:其余 A: 机器学习模型的精准度越高,则模型的性能越好 B: 增加模型的复杂度,总能减小测试样本误差 C: 增加模型的复杂度,总能减小训练样本误差 D: 其余选项说法都不对
- 避免欠拟合的方法是 A: 模型复杂度过低,不能很好的拟合所有的数据,训练误差大 B: 增加模型复杂度,如采用高阶模型(预测)或者引入更多特征(分类)等 C: 模型复杂度过高,训练数据过少,训练误差小,测试误差大 D: 降低模型复杂度,如加上正则惩罚项,如L1,L4,增加训练数据等
- 关于训练集和测试集的划分,下面比较好的做法是: A: 将手头上所有的数据拿来训练模型,预测结果正确率最高的模型就是我们所要选的模型 B: 将所有数据中的前百分之80拿来训练模型,剩下的百分之20作为测试集,测试集预测结果正确率最高的模型就是我们所要选的模型 C: 将所有数据先随机打乱顺序,百分之80用来训练模型,剩下的百分之20作为测试集,测试集预测结果正确率最高的模型就是我们所要选的模型 D: 将所有数据先随机打乱顺序,平均分成5份,轮流拿出其中1份作为测试集,其余的4份做为训练集,各次测试集预测的正确率求均值,正确率均值最高的模型就是我们所要选的模型