设平面x+ky−z−2 = 0与平面2x+y+z−1 = 0垂直,则k =
举一反三
- 设一平面垂直于平面$z=0$,并通过从点$(1, - 1,1)$到直线$\left\{ \matrix{ y - z + 1 = 0\cr x = 0\cr} \right.$的垂线,则此平面方程为( ). A: $x + 2y + 1 = 0$ B: $x + 2y = 0$ C: $x + 2y + 1 +z= 0$ D: $x + 2y + 2 = 0$
- 设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2
- int x=1, y=2, z=0; z= x > y ? x+y : x; 则z= ( )
- 设`\f(x,y,z) = x^2 + 4xy + ky^2 + z^2` 为正定二次型,则实数`\k`的取值范围是 ()
- 过点(1, -2, -2)且与平面x -2 y + 3z = 2平行的平面方程为 A: x -2 y + z = 6; B: x -2y + 3z = 0; C: x -2y + 3z = 0; D: 2x - y + 3z = 9.