判断半径大小并说明原因:[tex=1.643x1.214]w3HQGPuGLP5le7+/LCkumw==[/tex]与[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]
举一反三
- 判断半径大小并说明原因:(1)[tex=1.071x1.0]ZIxpATrL2EWTpYe3CKPlpg==[/tex]与 [tex=1.357x1.0]LO7mudz7++HOXb8YDQ1UtQ==[/tex](2) [tex=1.286x1.0]nOvFdt4hpTubfX23eRvSvg==[/tex]与[tex=1.071x1.0]Kr2c9X1cZ4El5JSNMoM0/w==[/tex](3) [tex=1.214x1.0]Q1mlMfKWwfAuQJLgzt2cVQ==[/tex]与[tex=1.357x1.0]ovKrdUm5wnQSTfl9He3wzA==[/tex](4)[tex=1.143x1.0]8nY7k4VEnlDIEx7o05iMhQ==[/tex]与[tex=1.357x1.214]in11+JirBe0MeyXDnVwAww==[/tex](5)[tex=1.643x1.214]cIgqspnlK9Ra13rNdyZhHQ==[/tex]与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex](6)[tex=1.929x1.143]CtrLAecFBVyCnMYbqB02Ag==[/tex]与[tex=2.0x1.214]2cEIifUWf5oYRzhjCpTV6A==[/tex](7)[tex=2.214x1.214]OdTls2gllRl/Z1zy0+35/g==[/tex]与[tex=2.071x1.214]YDXlUgl4Yvd6QFjcd0Ns2Q==[/tex](8)[tex=2.071x1.214]QvCjZKA7OQkNYccCl0MVgQ==[/tex]与[tex=1.929x1.214]GDfkuEdqfBLP2oRgr+Wojw==[/tex]
- 判断下列各对元素中,哪个元素的第一电离能大,并说明原因。[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]和[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]
- ([tex=2.286x1.0]jV77yGwC+Mx6/mPaHpjmIQ==[/tex]悖论)[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]和[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]两人赛跑,[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的速度为10[tex=1.857x1.357]s01JNG/cfJqbEBUPiJOwkA==[/tex],[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]的速度为0.01[tex=1.857x1.357]s01JNG/cfJqbEBUPiJOwkA==[/tex].开始时,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]在[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]前1000[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]的[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]处,[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]到达[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]处时,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]前进了一段距离,到达了[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]处,当[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]到达[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]处时,[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]又前进了一段距离,到达了[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]处...[tex=2.286x1.0]jV77yGwC+Mx6/mPaHpjmIQ==[/tex]断言[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]永远也追不上[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex],试解释这一现象.
- 证明如果[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]、[tex=0.643x1.0]awBC2UvU2WxG45VihksPuw==[/tex]均为基数为[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]的集合,[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]为正整数,则在集合[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]与集合[tex=0.786x1.0]TkWiaIfselaE0uOF2JDYag==[/tex]之间存在一个一一对应函数。
- 设[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]和[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]均为含幺环, [tex=4.929x1.286]i/qcPsD1vRQLSn0RZoXrsgLjKM36B3W2jm4OmIlwfLk=[/tex]为环的满同态. 则[tex=4.357x1.357]0MeSHITGwH3ynUj9KdJsC+nZLrBHEPG0LGFtYnVMB/0=[/tex].