举一反三
- 设有四张卡片分别标以数字1,2,3,4,今任取一张,设事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为取到1或2,事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为取到1或3,事件[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为取到1或4,试验证[tex=22.214x3.071]Ck4j1YFlvVH5wCAykOEMi++IszHTh8h9QeHhqkwGi/K+aH87eNmhNg7En0z7R0/+mLtklycxACjRXcb6ZTF+04GQe2wnO6jBJzhwArgaGg4ADwnbnuClQcQutRuaZhsj/Ynq0VCVFU/MSCcb03PICrYUVfn+VB6sR5VIA6e4pu0=[/tex]
- 从标号 [tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex] 号到 [tex=1.0x1.0]GqOMsRKoSA9JSFw5lv/vpw==[/tex] 号的试验田中任取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 块,求(1) 取到试验田中最小号码为 [tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex] 的概率,(2) 求最大号码为 [tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex] 的概率.
- 平面运动副提供的约束为 未知类型:{'options': ['[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]', '[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]', '[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]', '[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]或[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex]'], 'type': 102}
- 设[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]是三个随机事件,试用[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]表示下列各事件:(1)恰有[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生;(2)[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]都发生而[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]不发生;(3)所有这三个事件都发生;(4)[tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex]至少有一个发生;(5)至少有两个事件发生;(6)恰有一个事件发生;(7)恰有两个事件发生;(8)不多于一个事件发生;(9)不多于两个事件发生;(10)三个事件都不发生.
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
内容
- 0
set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 1
一口袋中有 [tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex] 个球,在这 [tex=0.5x1.0]BhZ+18hz9Lz5rDhFQ34M8A==[/tex] 个球上分别标有[tex=1.286x1.143]sM5ZcR/I6JeRzaJbWD8Ckg==[/tex],[tex=1.286x1.143]sM5ZcR/I6JeRzaJbWD8Ckg==[/tex],[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex],[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex],[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex],[tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 这样的数字。从这袋中任取球,设各个球被取到的可能性相同,求取得的球上标明的数字 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布律与分布函数。
- 2
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 阶方阵,将 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第 [tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex] 列与第 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 列交换得 [tex=1.071x1.214]PSp40OyE3Da+bb1v5cWzIg==[/tex] 再把 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 的第 [tex=0.5x1.0]8C7DKsr6nhrfCdsmGxO88g==[/tex] 列加到第 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 列得到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]求满足 [tex=3.071x1.214]3+M19Dh1e/7vmqEyIJFlPw==[/tex] 的可逆矩阵 [tex=1.071x1.214]goCTjjcQ/6rEgdFE10fyyg==[/tex]
- 3
对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 4
>>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']