y=e^(-x^2)在区间(-∞,0)(1,∞)内分别是单调增加,单调增加。()
举一反三
- 1若函数y=x^2-2ax+2的单调增区间为[2,无限]求a范围若函数y=x^2-2ax+2在x属于[2,无限]上单调递增,求a的范
- 设函数y=x4-2x2-5,则下列结论中正确的是() A: [0,1]是其单调增加区间 B: [1,+]是其单调减少区间 C: (-,-1)是其单调增加区间 D: [-1,0]是其单调增加区间
- 关于函数\( y = { { {x^2}} \over {1 + x}} \)的单调性,下列说法正确的是( ) A: 在\( \left( { - \infty , - 2} \right) \)上单调增加 B: 在\( \left( {0, + \infty } \right) \)上单调增加 C: 在\( \left( { - 2, - 1} \right) \)上单调减少 D: 在\( \left( { - 1,0} \right) \)上单调减少
- 函数[img=72x17]17e0bcdb6c80936.jpg[/img]的单调区间是( ) 未知类型:{'options': ['在[img=49x19]17e0a7d3943f2c8.jpg[/img]上,单调增加', ' 在[img=49x19]17e0a7d3943f2c8.jpg[/img]上,单调减少', ' 单调增区间为[img=33x19]17e0b3ff7ff4137.jpg[/img],单调减区间为[img=49x19]17e0acb2e4f0c6b.jpg[/img]', ' 单调减区间为[img=33x19]17e0b3ff7ff4137.jpg[/img],单调增区间为[img=49x19]17e0acb2e4f0c6b.jpg[/img]'], 'type': 102}
- 函数[img=72x17]17e440541d9ebea.jpg[/img]的单调区间是( ) 未知类型:{'options': ['在[img=49x19]17e438ca3eefb49.jpg[/img]上,单调增加', ' 在[img=49x19]17e438ca3eefb49.jpg[/img]上,单调减少', ' 单调增区间为[img=33x19]17e439420ae5288.jpg[/img],单调减区间为[img=49x19]17e4394cfbad09a.jpg[/img]', ' 单调减区间为[img=33x19]17e439420ae5288.jpg[/img],单调增区间为[img=49x19]17e4394cfbad09a.jpg[/img]'], 'type': 102}