离散系统y[k]=4y[0]x[k]+3x[k]是线性系统
举一反三
- 【滤波理论】标准的卡尔曼滤波算法如下所示:(1) x ̂[k∕k-1]=Φ[k,k-1]x ̂[k-1∕k-1](2)P_x ̃ [k∕k-1]=Φ[k,k-1]P_x ̃ [k-1∕k-1]Φ [k,k-1]+Γ[k-1]Q[k-1]Γ' [k-1] (3)K[k]=P_x ̃ [k∕k-1]H' [k](H[k]P_x ̃ [k∕k-1]H'[k]+R[k])^(-1)(4) x ̂[k∕k]=x ̂[k∕k-1]+K[k](z[k]-H[k]x ̂[k∕k-1]) (5) P_x ̃ [k∕k]=(I-K[k]H[k])P_x ̃ [k∕k-1] 其中不可以离线计算的是: A: 预测误差方差阵 P_x ̃ [k∕k-1] B: 滤波值 x ̂[k∕k] C: 增益 K[k] D: 滤波误差方差阵 P_x ̃ [k∕k]
- 已知x=[-43,72,9,16,23,47],当输入命令>;>; [y,k]=max(x)y和k分别等于( )。 A: 47,2 B: 72,2 C: 47,6 D: 72,6
- 3 、 反应 X + 2Y → Z 是一个 2.5 级反应,下面的速率方程式中,可能正确的是 . . (A) v = k c (X)[ c (Y)] 2 ; (B) v = k c (X)[ c (Y)] 3/2 ; (C) v = k [ c (X)] 2 c (Y) ; (D) v = k [ c (X)] 0 [ c (Y)] 2
- 标量系统的状态方程和观测方程分别为????[????+1]=????????[????]+????[????]????[????]=????[????]+????[????]已知????=0.5, n[k]为和w[k]分别为白噪声,且观测噪声方差σ_w^2=8,状态噪声方差σ_n^2=7,则以下关于卡尔曼增益和滤波误差方差稳态值的说法正确的是: A: K(¥)=0.5,P_x ̃ [¥]=4 B: K(¥)=0.5,P_x ̃ [¥]=2 C: K(¥)=0.25,P_x ̃ [¥]=4 D: K(¥)=0.25,P_x ̃ [¥]=2
- 以下程序输出的结果是____。 #include #include main( ) { char w[ ][10]={"ABCD","EFGH","IJKL","MNOP"}, k; for(k=1;k<3;k++) printf("%s ",&w[k][k]); }