关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 关注微信公众号《课帮忙》查题 公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入!公告:维护QQ群:833371870,欢迎加入! 2022-07-23 设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数. 设函数f(x)满足:(1).f(0)=0;(2)x≠0时,其中a,b,c为常数,且|a|≠|b|.证明:f(x)是奇函数. 答案: 查看 举一反三 设函数f(x)满足f(x+Δx)-f(x)=2xf(x)Δx+ο(Δx)(Δx→0),且f(0)=2,则f(1)=____。 已知函数(x)f为奇函数,且当0>x时,f(x)=x2+1/2,则(-1)=f() 设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。设函数f(x)在x=0处可导,且f(0)=0,f′(0)=2,则=()。 设函数f(x)=sin(2x+φ)(其中0<φ<π)满足f(-x)=f(x),则( )A.f(x)在(0,π2) 设函数f(x)满足f′(0)=1,则极限=()。设函数f(x)满足f′(0)=1,则极限=()。