\(设L是以点A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形边界,\\则\oint_{L}\frac{ds}{|x|+|y|}=(\,)\)
A: \[4\]
B: \[2\]
C: \[4\sqrt{2}\]
D: \[2\sqrt{2}\]
A: \[4\]
B: \[2\]
C: \[4\sqrt{2}\]
D: \[2\sqrt{2}\]
举一反三
- 设L是以A(1,0),B(0,1),C(-1,0),D(0,-1)为顶点的正方形边界,则=()。 A: 4 B: 2 C: 4√2 D: 2√2
- 设L是以点(1,0),(0,1),(-1,0)和(0,-1)为顶点的正方形边界,则=()
- 设L是以点(1,0),(0,1),(-1,0)和(0,-1)为顶点的正方形边界,则=( )655709c9b8184152c9bd1c0cee0ee76c.png
- \(已知曲线弧L:y=\sqrt{1-x^2}(0\le x\le 1).则\int_{L}xyds=(\,)\) A: \[1\] B: \[\frac{1}{2}\] C: \[\frac{1}{3}\] D: \[\frac{1}{4}\]
- 函数$f(x,y)=\sqrt{1+{{y}^{2}}}\cos x$在点$(0,1)$处的1次Taylor多项式为 A: $\sqrt{2}-\frac{1}{\sqrt{2}}(y-1)$ B: $\frac{\sqrt{2}}{2}+\frac{1}{\sqrt{2}(}y-1)$ C: $2\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$ D: $\sqrt{2}+\frac{1}{\sqrt{2}}(y-1)$