MATLAB 中 dsolve 命令求解微分方程 y'+exy=1 时的正确格式为( )。
A: dsolve('Dy=1-exp(xy)','x')
B: dsolve('Dy=1-exp(x*y)','x')
C: dsolve('Du=1-exp(x*y)', 'x')
D: dsolve(Dy=1-exp(x*y), 'x')
A: dsolve('Dy=1-exp(xy)','x')
B: dsolve('Dy=1-exp(x*y)','x')
C: dsolve('Du=1-exp(x*y)', 'x')
D: dsolve(Dy=1-exp(x*y), 'x')
举一反三
- 如下命令中不能实现如下微分方程组[img=327x203]17e443a5d83ce02.png[/img],在初值条件[img=172x112]17e443a5e2ead01.png[/img]下的特解求解的是: A: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 't') B: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1, y(0)=0', 't') C: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0') D: [x,y] = dsolve('Dx+5*x+y = exp(t)', 'Dy-x-3*y=0', 'x(0)=1', 'y(0)=0', 'x')
- 求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2
- 运行命令“y=dsolve('x*D2y-3*Dy=x^2','t')”求解微分方程,则______
- 用dsolve函数求微分方程[img=179x60]18035b405e34ab7.png[/img]的解析解,正确的命令是( ). A: y = dsolve((D2y)^2+x*Dy=5*y) B: y = dsolve('(D2y)^2+x*Dy=5*y') C: y = dsolve('(D2y)^2+x*Dy=5*y', 'x') D: y = dsolve('(D2y)^2+x*Dy=5*y', 't')
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]