求下列二阶线性常系数齐次方程的解:[p=align:center][tex=8.0x1.357]2zBbUOo3bhePzpMRrvNCs7gSdfVUs98Vol+ApOigTiBvYFOdYFrzmwDZUzRK47kp[/tex]
举一反三
- 求下列二阶线性常系数齐次方程的解:[p=align:center][tex=7.714x1.357]zQQc1Obsw/VQuP1ecEmzPeXKHeBUMi5aGr0gQkXKNYBsHlxZAkcQ4JXmstFAjWCY[/tex]
- 设矩阵[p=align:center][tex=22.143x3.643]+HNIZcMaSzNwCe0LO7bsUq/nNqiD9uPVTX2/0HTi4M1ZunAEz7qfA0Rd4ovBDZfbF0GGptIGukHKOpbU4T80nTzErVwKYTs47PXy7I1XE++qtUmsh208vGDr7MXpYVMuue4tfvhHRJLpbtyk1c9gflSH5Tkz0UMsPjui7wPzKBU08/vB+N4sKYnD/Q0clHeQK7pT2y7o9KK3BmOLD7xVrZgRj2iFXMh2GeWPZ6MQh2cc/+VI9kCbffCxY/5NFhhEg5peWRqbWgbcZiOGAvr4nJHWN3qjueDxOqTvbDaTM3I=[/tex](1) 求 [tex=3.357x1.214]03ql8P+0CvRd0jLgTuf2VbT/wkB2igrddY7J5Strl0NU0hh6vIeN8jScC63B9GnL[/tex](2) 解矩阵方程 [tex=5.0x1.214]zvhQGTB3bj6p1+G/NgyQR3d8RUTq+KWJyJoscsNb5yO4fheydfGUyOSeXl9e1m/p[/tex] 求 [tex=1.286x1.214]J9ANNFCyxpObx83w0Vdt38yleCTlTu8vvnAXkiBZ7K0=[/tex](3)解矩阵方程 [tex=11.786x1.357]hbnRNbrpLcfkctuGfn+sleqQROrTrwqqWds6OPLk7Wdn4vtQb1+Muj1i2/7A1FkoB4neXMMMBk0saIAf9uWaRm+qUEsJaMS5QeVJeBYZxhkTnaWiAitNyge3msYgxeJV[/tex] 求 [tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex].
- 求下列二阶常系数非齐次线性微分方程的通解[tex=5.214x1.429]rjzw0bBUODiY66l+Mq83xIv2Pf3Pyw5JosTkprs0PPq/+n+DYctMooRGm0qbiwy3[/tex].
- 已知某二阶常系数非齐次线性差分方程的通解为[tex=10.429x1.286]94UAnG40IZGNKMO0vSw+Y6Uc0EvzEzxz0ZwwgyHKERTTc4iN+73JvEsBNPAhLKW8[/tex],求此差分方程.
- 用 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 变换法解下列差分方程:[tex=19.214x1.357]p6lLLi8JdFlgAhKX3MZJGikBDmXhPuJpvkPy0b6xJnQBpn4obECtm9bJaCLvQmdPWK9xgXMede3BbizckbyU3A==[/tex][p=align:center]