令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.714x1.357]gkwGei5ITDOF0egHPEe5fQ==[/tex]
举一反三
- 令[tex=3.357x1.357]UPaNvJfcVjX9mh3S818g8w==[/tex]为语句“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,其中变量[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的论域均为正整数集合。(所谓“[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]”,是指存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使得[tex=2.786x1.0]JyKu5Q0JmohTgp+FMz2hRQ==[/tex])确定下列每条语句的真值。[tex=2.929x1.357]9Vv4gtpaKbF7Mnn315YE6Q==[/tex]
- 设[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数。随机选择小于[tex=1.5x0.786]JfkVo3V0zjd4YegLGIx5GQ==[/tex]的正整数不被[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]或[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]整除的概率是多少?
- 从[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]元素集合到[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]元素集合有多少个部分函数?这里的[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]和[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数。
- 使用生成函数证明范德蒙恒等式:[tex=14.857x3.286]hDB3eLQPiWWd9ft+Q14eoJVcUCay0ClzWlPckFv+3/imTEddfU462KDq1s/vFmay[/tex],其中[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]、[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]和[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]是非负整数,且[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]不超过[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]或[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]。
- 在[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶循环群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中,对[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的每个正因子[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],阶为[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]的元恰好有[tex=2.357x1.357]I7WR+56oxioGAfJdogeEKA==[/tex]个,其中[tex=2.357x1.357]I7WR+56oxioGAfJdogeEKA==[/tex]是与[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]互素且不超过[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]的正整数的个数.由此证明等式[tex=5.714x2.286]nTEU1zxElODdY/gXN0t775YvTSWohWMGbDnrVh4VF23x243jFy1z4djppMnI1Bzj[/tex].