平行于坐标平面yoz的平面方程是( ).
A: x=2
B: y=2
C: z=2
D: x+y=2
A: x=2
B: y=2
C: z=2
D: x+y=2
举一反三
- 经过点M(2,3,1)而平行于yOz的平面方程为( ). A: x=2 B: y=3 C: z=1; D: z=2.
- 过点(3, -2, -1)并且平行于xoz坐标面的平面方程为 A: x - 3 = 0; B: z - 1 = 0; C: y + 2 = 0; D: . y - 2 = 0.
- 过点(1, -2, -2)且与平面x -2 y + 3z = 2平行的平面方程为 A: x -2 y + z = 6; B: x -2y + 3z = 0; C: x -2y + 3z = 0; D: 2x - y + 3z = 9.
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- \( xoz \) 坐标面上的直线\( x = z - 2 \)绕\( z \)轴旋转而成的圆锥面的方程为( ) A: \( {x^2} - {y^2} = {(z - 2)^2} \) B: \( {x^2} + {y^2} = {(z - 2)^2} \) C: \( {z^2} + {y^2} = {(x - 2)^2} \) D: \( {z^2} + {x^2} = {(y - 2)^2} \)