在命题逻辑中构造下面推理的证明前提:p→s,q→r,┐r,p∨q,结论s
①{1}p→s②{2}q→r③{3}┐r④{4}p∨q/∴s⑤{2,3}┐q②③→-⑥{2,3,4}p④⑤∨-⑦{1,2,3,4}s①⑥证毕
举一反三
- 构造下面推理的证明A) 前提: p®(q®s),q, p∨Ør结论: r®sB) 前提: Ø (p∧Øq) , Øq∨r, Ør结论: Ø p
- 构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
- ( )不是正确的推理形式。 A: 前提: p∨q, pÛr, ~q∨s 结论: s∨ B: 前提: ~p∧q, p∨~r, r∨s, sÞu 结论: u C: 前提: pÞ(qÞr) 结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p 结论: q
- ( )不是正确的推理形式。 A: 前提: ~p∧q, p∨~r, r∨s, sÞu结论: u B: 前提: p∨q, pÛr, ~q∨s结论: s∨r C: 前提: pÞ(qÞr)结论: (pÞq)Þ(pÞr) D: 前提: (p∧q)Þr, ~r∨s, ~s, p结论: q
- ( )不是正确的推理形式。 A: 前提:¬p∧q,p∨¬r,r∨s,s→u 结论:u B: 前提:(p∧q)→r, ¬r∨s,¬s,p 结论:¬q C: 前提:(p∧q)→r,¬r∨s, ¬s,p 结论:q D: 前提:p∨q,p→s,q→r 结论:s∨
内容
- 0
填充下面的推理证明中没有写出推理规则。前提:p→(q→r),q→(r→s)结论:(p∧q)→s证明:1p∧q2p3q4p→(q→r)前提引入5q→r6r7q→(r→s)前提引入8r→s9s
- 1
命题推理的有效前提:¬p∨q, r∨¬q,r→s,则结论正确得是 。 A: p→s B: s→p C: s∧p D: s∨p
- 2
以(﹁p∨﹁q)∧(r∧s)为前提进行推理,可以有效推出的结论有? ﹁p∨﹁q|r∧s|r∨s|﹁p∧﹁q
- 3
推理证明下列各题的有效结论。 ⑴p→ (q∨r ), (t∨ s)→p,(t∨ s) q∨r ⑵p∧q, (p? q)→ (t∨ s) (t∨ s)
- 4
试证明以下推理是有效的:[br][/br] 前提:p →(┐(r ∧ S) → ┐q) , p ,┐S 结论:┐q