A: 1
B: δ(ω)
C: 2πδ(ω)
D: 2&pi
举一反三
- δ(n)的z变换是( )。 A: δ(ω) B: 2πδ(ω) C: 2π D: 1
- δ(n)的z变换是 。( ) A: 2πδ(w) B: 1 C: δ(w) D: 2π
- δ(n)的z变换是( )? δ(w)|2π|2πδ(w)|;1
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- 信号$x[n]=(n-3)u(n)$的Z变换结果是 A: $\frac{1}{z^2(z-1)^2}$ B: $\frac{1}{z^2(z-1)}$ C: $\frac{1}{z(z-1)^2}$ D: $\frac{1}{z^2(z+1)^2}$
内容
- 0
计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)
- 1
序列x(n)=2nu(n)的z变换的极点是 () A: z=-0.5 B: z=2 C: z=-2 D: z=0.5
- 2
δ()的Z变换是() A: 1 B: δ(ω) C: 2πδ(ω) D: 2π
- 3
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 4
已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4