设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd356bfb2ce.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,则边界层动量损失厚度δ2与边界层几何厚度δ的关系为( )
A: [img=51x20]1803bd357432755.jpg[/img]
B: [img=51x20]1803bd357ce1ef2.jpg[/img]
C: [img=52x20]1803bd35855d81e.jpg[/img]
D: [img=51x20]1803bd358e8ebc5.jpg[/img]
A: [img=51x20]1803bd357432755.jpg[/img]
B: [img=51x20]1803bd357ce1ef2.jpg[/img]
C: [img=52x20]1803bd35855d81e.jpg[/img]
D: [img=51x20]1803bd358e8ebc5.jpg[/img]
举一反三
- 设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd3579170f4.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,则边界层排挤厚度δ1与边界层几何厚度δ的关系为( ) A: [img=51x20]1803bd3581c4287.jpg[/img] B: [img=51x20]1803bd358a6ff55.jpg[/img] C: [img=52x20]1803bd359384127.jpg[/img] D: [img=51x20]1803bd359cf8aab.jpg[/img]
- 设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd3579170f4.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,则边界层排挤厚度δ1与边界层几何厚度δ的关系为( ) 未知类型:{'options': ['', '', '', ''], 'type': 102}
- 设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd371d9e1f6.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,基于边界层动量积分关系式可得边界层几何厚度δ为( ) 未知类型:{'options': ['1803bd3727f3c71.jpg ,其中ν为流体的运动粘度', '1803bd37319346e.jpg ,其中ν为流体的运动粘度', '1803bd373b2a35e.jpg ,其中ν为流体的运动粘度', '1803bd37459a6b2.jpg ,其中ν为流体的运动粘度'], 'type': 102}
- 设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd3596f3881.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,基于边界层动量积分关系式可得平板表面的粘性切应力τ0为( ) 未知类型:{'options': ['1803bd35a2ac3de.jpg ,其中[img=9x18]1803bd35ae7da23.jpg[/img] 为流体的动力粘度', '1803bd35b86ac1d.jpg ,其中[img=9x18]1803bd35c0c46bd.jpg[/img] 为流体的动力粘度', '1803bd35cc60941.jpg ,其中[img=9x18]1803bd35d5afcf7.jpg[/img] 为流体的动力粘度', '1803bd35df7dff0.jpg ,其中[img=9x18]1803bd35e701970.jpg[/img] 为流体的动力粘度'], 'type': 102}
- 设不可压缩流体平板层流边界层内的速度分布为[img=47x42]1803bd374dce34d.jpg[/img] ,其中Vx为边界层内x方向速度,V0为均匀来流的速度大小,y为沿平板法向的坐标位置,基于边界层动量积分关系式可得边界层排挤厚度δ1为( ) 未知类型:{'options': ['1803bd37583d561.jpg ,其中ν为流体的运动粘度', '1803bd3762d53aa.jpg ,其中ν为流体的运动粘度', '1803bd376da694c.jpg ,其中ν为流体的运动粘度', '1803bd3778f777f.jpg ,其中ν为流体的运动粘度'], 'type': 102}