曲线[img=70x22]18034a51d5b3e56.png[/img]与x轴及直线[img=113x42]18034a51ded2a04.png[/img]所围区域的面积定积分表达式为[img=87x56]18034a51e787a94.png[/img]
举一反三
- 由曲线[img=53x21]17e0c150ce18dac.png[/img],[img=55x21]17e0c150da32e2b.png[/img]及直线x=0,x=[img=7x42]17e0c150e6565ed.png[/img]所围图形的面积( ) 未知类型:{'options': ['17e0c150f25a387.png;', ' [img=113x42]17e0c150fe71a63.png[/img];', ' [img=113x42]17e0c1510a9dd41.png[/img];', ' [img=113x42]17e0c15117abe19.png[/img].'], 'type': 102}
- 由[img=35x25]1803d355c182eb9.png[/img]上连续曲线y = f(x)及直线x =a,x= b(a <b)与x轴所围图形面积S=( ) A: [img=83x52]1803d355cabd312.png[/img] B: [img=95x53]1803d355d361a34.png[/img] C: [img=91x52]1803d355dc59dde.png[/img] D: [img=149x45]1803d355e4a0041.png[/img]
- 定积分[img=83x52]180346792e3d791.png[/img],当[img=67x25]180346793747e85.png[/img]时,在几何上表示由曲线[img=66x25]1803467940a3187.png[/img],直线x=[img=93x23]18034679495657f.png[/img]及直线[img=11x14]18034679524a7c3.png[/img]轴所围成的图形的面积。
- 曲线[img=50x26]17e44303f456484.png[/img]与[img=51x26]17e44303fdddabe.png[/img]所围图形绕x轴旋转所成的旋转体的体积的定积分表达式为 未知类型:{'options': ['', ' [img=141x51]17e443041214df9.png[/img]', ' [img=150x51]17e443041c9d92c.png[/img]', ' [img=125x51]17e4430426ae789.png[/img]'], 'type': 102}
- 计算函数[img=39x17]17da567a1572a14.jpg[/img],[img=77x18]17da610b30eaf86.jpg[/img]及x轴所围图形的面积.