设J是元素全为1的n阶方阵,证明E-J是可逆方阵,且(E-J)^-1=E-(1/n-1)J,这里E是与J同阶的单位矩阵
举一反三
- 设\(A\)为n阶方阵,\(n>1\),且\(A\)的第\((i,j)\)位元素等于\(i\times j\),那么\(\det A = \) A: \(n^2\) B: \(n\) C: 1 D: 0
- 下面那个初等方阵是初等方阵E((k),j)的逆矩阵是( ) A: E(i,j); B: E(i(1/k)). C: E(i(k)); D: E(i(-k),j);
- 初等方阵E(i,j)的逆矩阵是( )。 A: E(i(k)); B: E(i(1/k)). C: E(i(k),j); D: E(i,j);
- 下列程序段不能正确显示1!、2!、3!、4!的结果的是 。 A: For i = 1 To 4 For j = 1 To i n = 1 n = n * j Next j MsgBox( n)Next i B: Dim i%, j%, n%For i = 1 To 4 n = 1 For j = 1 To i n = n * j Next j MsgBox( n)Next i C: Dim j%, n%n = 1For j = 1 To 4 n = n * j MsgBox( n)Next j D: Dim j%, n%n = 1j = 1Do While j<=4 n=n*j MsgBox(n) j=j+1Loop E: Dim j%, n%n = 1j = 1Do n=n*j MsgBox(n) j=j+1Loop While j<=4
- 设\(A\)为n阶方阵,\(n>2\),且\(A\)的第\((i,j)\)位元素等于\(i+j\),那么\(\det A = \) A: \(2n\) B: \(n\) C: 1 D: 0