1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-1
1.A^2-2A-E=A^2-2A-15E+14E=(A+3E)(A-5E)+14E=0所以:(A+3E)*[(A-5E)/(-14)]=EA+3E)^-1=(A-5E)/(-14),即(5E-A)/142.由R(A)=n-1,n-(n-1)=1,可得方程组AX=0的通解只有1个基础解系又各行元素之和均为0,所以通解X=c*(1,...
举一反三
- 设`\A`为`\n`阶矩阵,且`\A^3=O`,则矩阵`\(E-A)^{-1}=` ( ) A: \[E - A + {A^2}\] B: \[E + A + {A^2}\] C: \[E + A - {A^2}\] D: \[E - A - {A^2}\]
- 设A为3阶矩阵,|A|=1/2,求|(2A)^
- 设A为3阶矩阵,且已知|3A+2I|=0,则A必有一个特征值为( ) A: 2/3 B: 1/3 C: -2/3 D: -1/3
- 设`\A`为`\n`阶方阵,`\A^**`为`\A`的伴随矩阵,且`\| A | = a \ne 0`,则`\| A^**| = ` ( ) A: \[a^{n - 1}\] B: \[a^n \] C: \[a^{n + 1}\] D: \[a^{n + 2}\]
- 设A是n阶矩阵,0是n阶零矩阵,且Aˆ2-E=0,则必有 A: A=ATˆ-1 B: A=-E C: A=E D: |A|=1
内容
- 0
设A是n阶矩阵,A=½E,则 |A|=( )。 A: (1/2)^n B: 2^n C: 1/2 D: 2
- 1
设A为n阶方阵,E为n阶位矩阵,且(A+E)^3=(A-E)^3,则A^(-1)=?
- 2
若A为n阶方阵,且A^3=0,则矩阵(E-A)^(-1)=?
- 3
设A是3阶矩阵,P=(α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α1,α2,α3),则Q-1AQ=()。 A: D .
- 4
设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为()。 A: I B: 0 C: 1 D: 1/2