设 [tex=4.857x1.357]tyBM4yJ4dbU8iYEREXGvYugy+Wr6dV5P2WE63PGyvmQ=[/tex]([tex=1.357x1.143]JWPh5Y+gKP+sJyYE/oI3ew==[/tex] 表示全体正实数的集合) 证明:[tex=12.143x2.214]WtxeJOdjznK81n4OFrSQjDONPIH/OTnDXQllpOmIfPnzqTYBNRMuq8ML3ssKEGlmEpaIyAtgfIUER+I9WWdIlQ==[/tex]你能说明此不等式的几何意义吗?
举一反三
- 6.设[tex=4.357x1.357]WQ+BwqXgn09wawLe9/F3lhKlbx/O9rIAhnoKfZbyOZw=[/tex]([tex=1.357x1.143]cN+ghktPottiVSy1l5Sn4w==[/tex]表示全体正实数的集合),证明:[tex=12.143x2.214]C1o9w1iikbG1Vh+Ga6kj8LCdaHU66wsHOzh2yY98DIML/5NZRnl/a1b+aD30HI65VHlAyu6mAzW1PbOP/kiKjqfoLTjEBZ4mxZ7Dw/aBnTY=[/tex]你能说明此不等式的几何意义吗?
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 设 [tex=4.071x1.286]nR/cJv6OqBZsTDNk+MpaBw==[/tex],证明不等式[p=align:center][tex=12.0x2.286]X/Ri20XB58Oz2ZfZYw8yP6qEPtmDovjJXhp8eOv8KNGfaJgnC6X1XEJ+2xzOJGQkwqKgHtAAyzdujVIOGdlO7gycABMU66WddDs30mp1D7k=[/tex]。(本题满分8分)
- 设集合[tex=4.857x1.357]0UWOwKJitzW/Emh+o7F7SA==[/tex],[tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex]上的二元关系[tex=6.857x1.357]ctynjuznTmrVjCS46YSXkfla5E3Ed3Th4lCszZj54js=[/tex]不具备下列哪种性质?(1)传递性;(2)反对称性;(3)对称性;(4)自反性;