各个弱分类器的训练过程结束后,分类误差率小的弱分类器的权重较大,其在最终的分类器中起着较大的决定作用。
举一反三
- Adaboost算法在组合基分类器的时候让分类效果好的弱分类器具有较大的权重,而分类效果差的分类器具有较小的权重,并不要求所有分类器权重的和为1。<br/>()
- 以下关于集成学习特性说法错误的是( )。 A: 集成学习需要各个弱分类器之间具备一定的差异性 B: 弱分类器的错误率不能高于0.5 C: 集成多个线性分类器也无法解决非线性分类问题 D: 当训练数据集较大时,可分为多个子集,分别进行训练分类器再合成
- 以下关于集成学习特性说法错误的是( )。 A: 集成学习需要各个弱分类器之间具备一定的差异性 B: 弱分类器的错误率不能高于0.5 C: 集成多个线性分类器也无法解决非线性分类问题 D: 当训练数据集较大时,可分为多个子集,分别进行训练分类器再合成
- Adaboost算法的自适应体现在,以每一个基分类器的分类错误率为依据来决定该分类器在整个组合分类器中的权重,分类器错误率越低,基分类器权重越大。
- AdaBoost算法训练弱分类器的过程中,如果某个样本已经在上一个弱分类器中被准确地分类,那么在构造下一个训练集时,它的权重将被:()。 A: 升高 B: 降低 C: 不变 D: 置0