设\(w = f(x + y + z,xyz)\),其中\(f\)有连续偏导数,则\( { { {\partial}w} \over {\partial {x}}} =\)
A: \({f'_1} + yz{f'_2}\)
B: \(x{f'_1} + yz{f'_2}\)
C: \(yz{f'_1} +x{f'_2}\)
D: \({f'_1} +{f'_2}\)
A: \({f'_1} + yz{f'_2}\)
B: \(x{f'_1} + yz{f'_2}\)
C: \(yz{f'_1} +x{f'_2}\)
D: \({f'_1} +{f'_2}\)
举一反三
- 由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)
- 【单选题】对任意实数x 1 , y 1 , x 2 , y 2 , x 1 < x 2 , y 1 < y 2 , 分布函数P{x 1 <X≤x 2 , y 1 <Y≤y 2 }=? A. F(x 2 , y 2 )+ F(x 1 , y 1 )+ F(x 1 , y 2 )+ F(x 2 , y 1 ) B. F(x 2 , y 2 )- F(x 1 , y 1 )+ F(x 1 , y 2 )- F(x 2 , y 1 ) C. F(x 2 , y 2 )+ F(x 1 , y 1 )- F(x 1 , y 2 )- F(x 2 , y 1 ) D. F(x 2 , y 2 )- F(x 1 , y 1 )- F(x 1 , y 2 )+ F(x 2 , y 1 )
- 1.设$f(x)$在区间$I$内连续且$f(x)\ne 0$,若${{F}_{1}}(x)$,${{F}_{2}}(x)$是$f(x)$的两个原函数,则在区间$I$内( ). A: ${{F}_{2}}(x)\equiv {{F}_{1}}(x)$ B: ${{F}_{1}}(x)\equiv C{{F}_{2}}(x)$ C: ${{F}_{1}}(x)+{{F}_{2}}(x)\equiv C$ D: ${{F}_{2}}(x)-{{F}_{1}}(x)\equiv C$
- 设函数f(x)=a|x|(a>0),且f(2)=4,则( ) A: f(-1)>f(-2) B: f(1)>f(2) C: f(2)<f(-2) D: f(-3)>f(-2)
- 设\(f\left( {x,y,z} \right) = x{y^2} + y{z^2} + z{x^2}\),则\({f_{yz}}\left( {0,-1,0} \right) = \)( ) A: 1 B: 0 C: -1 D: 2