设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( )
A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\)
B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\)
D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\)
B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\)
D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
举一反三
- 设\(z = {e^u}\sin v,\;u = xy,\;v = x + y\),则\( { { \partial z} \over {\partial y}}=\)( ) A: \(x{e^{xy}}\sin \left( {x + y} \right) + {e^{xy}}\cos \left( {x + y} \right)\) B: \(x{e^{xy}}\sin \left( {x + y} \right) \) C: \( {e^{xy}}\cos \left( {x + y} \right)\) D: \(x{e^{xy}}\sin \left( {x + y} \right) - {e^{xy}}\cos \left( {x + y} \right)\)
- 设\(z = xy{e^{\sin xy}}\),则\({z'_y} = \)( )。 A: \(x{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) B: \(y{e^{\sin xy}}\left( {1 + xy\cos xy} \right)\) C: \(x{e^{\sin xy}}\left( {1 + y\cos xy} \right)\) D: \(x{e^{\sin xy}}\left( {1 - xy\cos xy} \right)\)
- 设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial y}}=\)( )。 A: \( { { xz} \over {xy+cos z }}\) B: \(- { { xz} \over {xy+cos z }}\) C: \(- { { xz} \over {\cos z - xy}}\) D: \( { { xz} \over {\cos z - xy}}\)
- 设方程\(\sin z - xyz = 0\)确定函数\(z=z(x,y)\),则\( { { \partial z} \over {\partial x}}=\) A: \( { { yz} \over {\cos z + xy}}\) B: \( { { yz} \over {xy-cos z }}\) C: \( { { yz} \over {\cos z - xy}}\) D: \(- { { yz} \over { xy+cos z }}\)
- 由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)