一弦上驻波方程式为[img=206x28]178694414804f0c.png[/img],式中y和x的单位为m,t的单位为s,则波节的位置的一般表达式为
A: x=±(n+1/4)/2, n=0,±1,±2..
B: x=±n/2, n=0,±1,±2..
C: x=±(n+1/2)/2, n=0,±1,±2..。
D: 无法判断
A: x=±(n+1/4)/2, n=0,±1,±2..
B: x=±n/2, n=0,±1,±2..
C: x=±(n+1/2)/2, n=0,±1,±2..。
D: 无法判断
举一反三
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e0bb90d234a43.jpg[/img]已知某数字系统的[img=191x22]17e0bb91a52fc70.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 已知一个序列x(n)的z变换X(z)定义成[img=140x46]17e4422545608da.jpg[/img]已知某数字系统的[img=191x22]17e442257956284.jpg[/img],则单位脉冲响应h(n)= A: h(n)={1, 2, 0, 2, 1} , 0≤n≤4 B: h(n)={1, 2, 2, 1} , 0≤n≤3 C: h(n)={1, 2, 0, 2, 1} , 1≤n≤4 D: h(n)={1, 2, 2, 1} , 1≤n≤4
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 设X ~ N(2, 9)则Y = (X – 2 )/9 ~ N(0, 1).
- 计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)