(5). 有一繁忙的汽车站,有大量汽车通过,设每辆汽车在一天的某段时间内出事故的概率为0.0001,在某天的该段时间内有1000辆汽车通过,面积出事故的次数不少于2的概率为( )。
A: \(1-e^{0.1}\)
B: \(1-e^{-0.1}\)
C: \(1-1.1e^{-1}\)
D: \(1-1.1e^{-0.1}\)
A: \(1-e^{0.1}\)
B: \(1-e^{-0.1}\)
C: \(1-1.1e^{-1}\)
D: \(1-1.1e^{-0.1}\)
举一反三
- 有一繁忙的汽车站,有大量汽车通过,设每辆汽车在一天的某段时间内出事故的概率为0.0001,在某天的该段时间内有1000辆汽车通过,出事故的次数不少于2的概率为 ( )? A: 1-1.1e^{-1} B: 1-e^{-0.1} C: 1-1.1e^{-0.1} D: 1-e^{-0.1}
- 有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是 A: 1-1.1e^(-0.1) B: [0.1^2 x e^(-0.1)]/2 C: e^(-0.1) D: 1- e^(-0.1)
- 中国大学MOOC:"有一繁忙的汽车站,有大量汽车通过,设每辆汽车在一天的某段时间内出事故的概率为0.0001,在某天的该段时间内有1000辆汽车通过,出事故的次数不少于2的概率为 ( )?";
- 有一繁忙的汽车站,每天有大量的汽车经过,设每辆汽车在一天的某段时间内出事 故的概率为 [tex=3.071x1.214]jP+oLRHppLbl2lZ8ToCZZQ==[/tex] 在某天的该段时间内有 1000 辆汽车经过,问:出事故的次数不小于 2 的概率是多少?(利用泊松定理计算)
- 有一繁忙的汽车站,有大量汽车通过,设每辆汽车在一天的某段时间内出事故的概率为0.0001,在某天的该段时间内有1000辆汽车通过,出事故的次数不少于2的概率为 ( )? A: [img=79x24]1803932eb276d6a.png[/img] B: [img=66x24]1803932ebb3c4ea.png[/img] C: [img=89x24]1803932ec40c48b.png[/img] D: [img=56x24]1803932ecc871f5.png[/img]