设函数[tex=2.786x1.357]KN1cEGuKT98koVu5UluwvQ==[/tex]具有二阶连续偏导数,[tex=4.643x1.357]jEbkPlhIo7b25in8MVcE6g==[/tex],则[tex=3.357x2.714]Hvc3DRViYQYrFC7OWnSXU8sm/Pmd4fpXiN2+clQYNt5/RjpAQPH7J3Z2mxPevMqv[/tex]?
举一反三
- 设[tex=9.286x1.357]JdWYfGtp5xNLOqpyIVhygjmb5t6NhuQKLsfnOlCdADU=[/tex]其中[tex=1.643x1.357]QEos0FZVoxidwAY2Qi/JJQ==[/tex]二阶可导,[tex=2.786x1.357]XFjcQ0Gsv9lEUsq2Ht4/nQ==[/tex]具有二阶连续偏导数,求[tex=2.429x2.714]Hvc3DRViYQYrFC7OWnSXU8sm/Pmd4fpXiN2+clQYNt4lDMw+d/AngnlMuvf4C5Ve[/tex].
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 考虑二元函数 [tex=2.786x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=3.071x1.286]cSjGHqCnItShrO6H41ZST8s5v6AHO0ktGOR16s+kL4s=[/tex] 处 4 条性质: (1) 连续,(2)两个偏导数连续,(3)可微,(4)两个偏导数存在,则 未知类型:{'options': ['[tex=6.714x1.286]hd35pNaA0Eiod8MTmFaGgomYJBkfxcNNvnWevNvPTwMSydbpVrPrhMJ0LU8O97Zy[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNwz4bkVJwCFlEEDGnhT6XGdiezZJkBRlts2vKWpBfQmRU[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNw0ELizSCnLXgyBFl6JWuZ0CbAT9eBgE3kPOkvkvYcDKJ[/tex]', '[tex=6.714x1.286]cYYmka0YgBDD439OD8YNw+K/wZl+af8MPlcg6Vl771DZ9E/n1OLTs1Rt7tiyNPo0[/tex]'], 'type': 102}