证明: 如果 [tex=1.929x1.357]0fRX0V1rxv8nkoCpsr9nHQ==[/tex] 为首一多项式, 则[tex=16.0x1.357]35V844DXFcUnSmkBSZABhAGL0hk4hYTpjdf2vKng0FAH0jWgMUF7U4RV1zKj9bwq[/tex]
举一反三
- 【单选题】Which of the following matrices does not have the same determinant of matrix B: [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -1, 0, -9,-5] A. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 0; -1, 0, -9, -5] B. [1, 3, 0, 2; -2, -5, 7, 4; 1, 0, 9, 5; -1, 0, -9, -5] C. [1, 3, 0, 2; -2, -5, 7, 4; 3, 5, 2, 1; -3, -5, -2, -1] D. [1, 3, 0, 2; -2, -5, 7, 4; 0, 0, 0, 1; -1, 0, -9, -5]
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 利用行列式的性质计算下列行列式的值1 2 0 0 02 5 0 0 0 9 8 1 2 37 6 4 5 65 4 7 8 9
- 若多项式[tex=11.214x1.286]SjK0S1WZKzbJ274ItOnkARL7nFK+zdRrCU6QNLzudTI=[/tex]能被[tex=2.214x1.286]wAsYQMu7MmTp6bSm/DQuDw==[/tex]整除,则实数[tex=1.571x1.286]HKnp+uHPBk2bwxzOgbygNw==[/tex] A: 0 B: 1 C: 0或1 D: 2 E: 1或2
- 有代码片段:function f(y) {var x=y*y;return x;} for(var x=0;x< 5;x++) {y=f(x);document.writeln(y);}输出结果是( )。 A: 0 1 2 3 4 B: 0 1 4 9 16 C: 0 1 4 9 16 25 D: 0 1 2 3 4 5