按定义求函数在[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]处的导数:[tex=6.357x1.5]55vau+C+5goYYoSKBMzoeg==[/tex],[tex=2.429x1.0]gJ1Vm+nsn+OeZUnQgJdCjg==[/tex] .
举一反三
- 设函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在点[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],具有连续的二阶导数,证明:[tex=15.286x2.5]JWlL+pXxRcPtkvAO+24rrnkmYexDLbfwxvoPzVHSkLUNXloVGafJMRclg7u2X9pC0tGxnp7GLocXR0NPO1GAJC2f0hEMMhFikRJ1Ds4NCG/YPalbB2p4jeIbBwPMYGFN[/tex]
- 求下列参数方程所确定的函数的导数[tex=1.357x2.429]S7luyuqBdxncyxDf4c61lQ==[/tex]:[tex=10.0x2.929]gu90YT9VhYiCoPhoSPPrwCOWL+2RzGu5DEZOkB60db72ulCfz5kSKXvoN6FsqcTPJ17OFAjGerY/5MFiOeARv1WizyRNRqt39kDuy9UQLbliWV2YBIxkttfOYEP+5qzW[/tex]([tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]为常数)
- 求[tex=7.714x3.357]fnpmC2J6JmQBLyo5NmGAz9K9Jv/Q2VPdKVxt22XqyXCQX8k6OilZ23nknYD/BWjsw8ClO5/VJ2IJuUP7i7+cMOIz8Tzjxzz2mtlCykZCw5E=[/tex]([tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]是常数)参数方程在[tex=3.071x2.143]pR+JI796wT8niVELM3CCkx4XYR+vn7Y2CMCdulAWdZM=[/tex]点的导数
- 卢瑟福的[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]散射实验所用[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]粒子的能量为[tex=4.143x1.0]igk2yAGpGskvWjUkt0gCkQ==[/tex]粒子的质量为[tex=5.786x1.429]XcSktAGp3Ig3unvKswStj9U8Vf1OdgBVHdkoRvsKbZo=[/tex],所用[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]粒子的波长是多少?对原子的线度[tex=3.214x1.214]Wgtk/tqO4JcSpOS1wlMOBQ==[/tex]来说,这种[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]粒子能像卢瑟福做的那样按经典力学处理吗?[br][/br]
- 设[tex=1.714x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex]处连续,且[tex=12.857x4.214]ACpG7W/lXiEwdW69ASBj89VuE0FUo5hY+ev/XmQQZBmt2Rmo8zFLPLbChryg6WbGJPIO0EekNf3wY3bnTgGjaZRcEYBEtbXnrr1iLTkjb9W8cOYIXW9SRPtX4aPee3AG19NuJ8UzWlbVYLXtO8kJVA==[/tex],求[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]。