将函数[img=120x25]1803bbfb19b15df.png[/img]展开成x的幂级数为( )
A: [img=219x60]1803bbfb236399a.png[/img]
B: [img=174x60]1803bbfb2e5662f.png[/img]
C: [img=233x60]1803bbfb3928586.png[/img]
D: [img=188x60]1803bbfb42f0677.png[/img]
A: [img=219x60]1803bbfb236399a.png[/img]
B: [img=174x60]1803bbfb2e5662f.png[/img]
C: [img=233x60]1803bbfb3928586.png[/img]
D: [img=188x60]1803bbfb42f0677.png[/img]
举一反三
- 下列函数中为同一个函数的是() 未知类型:{'options': ['f(x)=x,g(x)=[img=25x39]17e43f7e294a229.png[/img]', ' f(x)=x,g(x)=[img=39x24]17e43f7e31cdea3.jpg[/img]', ' f(x)=x,g(x)=[img=35x25]17e43f7e3c419e9.png[/img]', ' f(x)=|x|,g(x)=[img=35x25]17e43f7e3c419e9.png[/img]'], 'type': 102}
- 令F(x):x是有理数,G(x):x是实数。将命题“所有的有理数都是实数,但有的有实数不是有理数”符号化为() 未知类型:{'options': ['17e0a83a4157352.jpgx(F(x)∧G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)[img=14x9]17e0a73094b5dcf.jpg[/img][img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)[img=14x9]17e0a73094b5dcf.jpg[/img]G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)∧[img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)∧G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)∧[img=10x11]17e0a839b915354.jpg[/img]F(x))', ' [img=8x14]17e0a83a4157352.jpg[/img]x(F(x)[img=14x9]17e0a73094b5dcf.jpg[/img]G(x))∧[img=8x14]17e0a83a35505d4.jpg[/img]x(G(x)[img=14x9]17e0a73094b5dcf.jpg[/img][img=10x11]17e0a839b915354.jpg[/img]F(x))'], 'type': 102}
- X~N(1,1), 密度函数为[img=37x25]18038fe689205b5.png[/img], 分布函数为F(x), 则( ) A: [img=198x25]18038fe690a03ee.png[/img] B: [img=101x25]18038fe69af96aa.png[/img] C: [img=67x25]18038fe6a3b8e5b.png[/img][img=118x25]18038fe6ab93d6f.png[/img] D: F(x)=F(-x)
- 设随机变量X的密度函数为f(x),分布函数为F(x),f(x)关于y轴对称,则有( ) A: [img=140x25]1803da31a560693.png[/img] B: [img=154x25]1803da31adcabd7.png[/img] C: [img=109x25]1803da31b6af422.png[/img] D: [img=149x25]1803da31bffb06d.png[/img]
- 设随机变量X的密度函数为f(x),分布函数为F(x),f(x)关于y轴对称,则有( ) A: [img=140x25]180357420e61492.png[/img] B: [img=154x25]1803574216b080f.png[/img] C: [img=109x25]180357421f04a55.png[/img] D: [img=149x25]1803574227a6825.png[/img]