• 2022-07-28
    设x0,x1,x2,x3和x4为互异的点,求满足插值条件N(x0)=1,N(x1)=0,N(x2)=0,N(x3)=0,N(x4)=1的4次牛顿插值多项式.
  • 方法1.列差商表ixiN(xi)N【xi,xi+1】N【xi,xi+1,xi+2】N【xi,xi+1,xi+2,xi+3】N【xi,xi+1,xi+2,xi+3,xi+4】0x01frac{1}{x_0-x_1}frac{1}{(x_0-x_1)(x_0-x_2)}frac{1}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}frac{1}{x_4-x_0}left[frac{1}{prod_{j=1}^n(x_4-x_j)}-frac{1}{prod_{j=1}^n(x_0-x_j)}right]1x1000frac{1}{(x_4-x_3)(x_4-x_2)(x_4-x_1)}2x20Ofrac{1}{(x_4-x_3)(x_4-x_2)}3x30frac{1}{x_4-x_3}4x41因而4次牛顿插值多项式为方法2.利用差商与函数值之间的关系得N[x0]=1,因而4次牛顿插值多项式为

    内容

    • 0

      设函数f(x)=(x2-6x+c1)(x2-6x+c2)(x2-6x+c3),集合M={x|f(x)=0}={x1,x2,x3,x4,x5}?N*,设c1≥c2≥c3,则c1-c3=(  ) A: 6 B: 8 C: 2 D: 4

    • 1

      设函数f(x)=(x2-6x+c1)(x2-6x+c2)(x2-6x+c3),集合M={x|f(x)=0}={x1,x2,x3,x4,x5}⊆N*,设c1≥c2≥c3,则c1-c3=(  )

    • 2

      求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 到matlab上运行一下,得到的结果,x是:

    • 3

      ‌设X ~ N ( 0 , 1 ),Y ~ N ( 0 , 1 ),且X与Y相互独立,则D(X – Y) = ( ).‏ A: 1 B: 2 C: 3 D: 4

    • 4

      已知定点小数x的反码为1.x1x2x3,,且x则必有___。 A: x1=0,x2=0,x3=1 B: x1=1 C: x1=0,且x2,x3不全为0 D: x1=0,x2=0,x3=0