函数f(x)=3x2+2*sin(pi*x)在x=1+处的导数为6-2pi
举一反三
- 函数f(x)=3x2+2*sin(pi*x)在x=1+处的导数为6-2pi。()(1.0分)
- 函数f(x)=3x2+2*sin(pi*x)在x=1处的导数为6-2pi
- 函数f(x)=3x 2 +2*sin(pi*x)在x=1处的导数为6-2pi。()
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- \(已知二元函数f(x,y)=\sin{x^2y},则\frac{\partial f}{\partial x}(1,\pi)=(\,)\) A: \(\frac{\pi}{2}\) B: \(2\pi\) C: \(-2\pi\) D: \(-\frac{\pi}{2}\)