• 2021-04-14
    下列程序运行后,看到的图形( ?????)。 ?????t=0:pi/6:2*pi;[x,y,z]=cylinder(t, 6);surf(x,y,z)view(0,90);axis equal
  • 12个同心的六边形

    内容

    • 0

      计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)

    • 1

      曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$

    • 2

      下列程序运行后得到的图形是。 [x,y]=meshgrid(-2:2); z=x+y; i=find(abs(x)<1 & abs(y)<1); z(i)=NaN; surf(x,y,z);

    • 3

      已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】

    • 4

      下列程序执行后,分别输入 54 , 21 , 38 ,打印结果是_______ Private Sub Command1_Click() X=InputBox("X") Y=InputBox("Y") Z=InputBox("Z") If X>y Then t=x : x=Y : Y=t If X>z Then t=x : x=z : z=t If y>z Then t=Y : Y=z : z=t Print x,Y,Z End Sub