设` `阶可逆方阵`A`满足`2|A| = |kA|`,`k`大于零,则`k = `( )
举一反三
- 设`\n`阶可逆方阵`\A`满足`\2|A| = |kA|`,`\k`大于零,则`\k = `( ) A: 0 B: 1 C: \[\sqrt[n]{2}\] D: \[\sqrt[{(n - 1)}]{2}\]
- 设n阶可逆矩阵A满足2|A|=|kA|,k>0,则k=______.
- 若`\n`阶可逆方阵`\A`满足`\2| A | = | kA |`,`\k 大于 0`,则`\k`为 ( ) A: 2 B: \[\sqrt[n]{2}\] C: \[\sqrt 2 \] D: \[\frac{1}{{\sqrt[n]{2}}}\]
- 设A为n阶方阵,k为非零常数,则 |kA| =( )
- 设A为n阶方阵,k为实数,则∣kA∣=k∣A∣.