证明 : 当 [tex=2.071x1.0]fFygQtL2niAHHkIQ5qPQvmk2fvF745jrXzXvE+qpilE=[/tex] 时[tex=2.643x1.214]yYb3PH38vBMDVq/8pbifRRdsE6t9g6IezQH20PcKSlA=[/tex]与[tex=0.571x0.786]BtcbEhhiHRCuAYpo9LKuzw==[/tex]是等价无穷小.
举一反三
- 当[tex=2.071x1.0]fFygQtL2niAHHkIQ5qPQvmk2fvF745jrXzXvE+qpilE=[/tex] 时,将下列无穷小与无穷小[tex=0.571x0.786]BtcbEhhiHRCuAYpo9LKuzw==[/tex]进行阶的比较. [tex=1.5x1.357]5fNjjm65WN0z54vwimCpUA==[/tex]
- 当[tex=2.071x1.0]fFygQtL2niAHHkIQ5qPQvmk2fvF745jrXzXvE+qpilE=[/tex]时,与[tex=0.571x0.786]BtcbEhhiHRCuAYpo9LKuzw==[/tex]为等价无穷小量的是( )。 未知类型:{'options': ['[tex=1.643x1.786]OrAsOWl8HPjJwguDRknAq2Yorou5mStYvCVsVXh+9wM=[/tex]', '[tex=1.643x1.571]OrAsOWl8HPjJwguDRknAqwUpPKfRkS0e5u3Ysb+7mn4=[/tex]', '[tex=6.286x1.429]XkZX+T+G3/F+XqV7zgR3Cu5D7G5fYcCGQlvb3PyB84Y=[/tex]', '[tex=2.929x1.5]LMAvo9yg4lhfcqOR2aeRfnYdLub8XFXguipELpgBg0k=[/tex]'], 'type': 102}
- 当[tex=2.071x1.0]fFygQtL2niAHHkIQ5qPQvmk2fvF745jrXzXvE+qpilE=[/tex]时,与[tex=0.571x0.786]BtcbEhhiHRCuAYpo9LKuzw==[/tex] 等价的无穷小量是( ). 未知类型:{'options': ['\xa0[tex=2.857x1.357]LDRSHTQZM5TsBhcrTbJCQEqTX9t9FmjjLCBUmC4mAqg=[/tex]', '[tex=5.071x1.571]VHRrtudiNr+/9oQXi2OXxWPKkryOiKaVGBLoV9OIlQw=[/tex]', '[tex=4.429x1.429]91LGS4fN+b/BFxH5kfCEsg5w5irsag6aJhJ/u+Ot8OM=[/tex]', '[tex=5.071x1.286]fCZSZqDp+fH/a8DqRijW8/augzScuJjNAWT+CwKllBs=[/tex]'], 'type': 102}
- 当[tex=2.071x1.0]fFygQtL2niAHHkIQ5qPQvmk2fvF745jrXzXvE+qpilE=[/tex]时, [tex=3.857x1.214]8ID8kXaMfdgytGPx6ane0nChK1ivbuqRAcAZYFvxRwA=[/tex]与 [tex=5.143x1.143]JJOwW+Ax4BQWqflHT09GM+ONsqxQCT2gJ6N5RzKd6us=[/tex] 哪个是高阶无穷小?
- 当[tex=2.071x1.0]I7mU1l3PredrIlUKcPhMQw==[/tex]时,[tex=2.214x0.929]J2IZEURmGdhezs51G9oIwA==[/tex]是无穷小,试确定此函数是[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的高阶无穷小?同阶无穷小?还是等价无穷小?