矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是三阶方阵, 它的特征值为 1,-1,0, 对应的特征向量依次为 [tex=11.857x1.429]hwpQnGwerwDJZR5YkaADDPrqqWdlJFM79vk0vFBGVDJaOlRIk93v8kEu+NxndGpSiVRevzkyxs1LV7q5pRYHOw==[/tex], 求矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex].
举一反三
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.571x0.786]dhexd0YHgG8oWh1T/Sn8zA==[/tex] 阶零矩阵;求矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值和特征向量。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵且有特征值 1, 又 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 只有一个线性无关的特征向量. 求 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 Jordan 标准型.
- 若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合 [tex=2.357x1.214]7q0oZJE3JAfWae2ZKHZKIg==[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 特征值可能的取值为 A: 0,1 B: 0,-1 C: 0,1,-1 D: 1,-1
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=2.714x1.214]rPRBSosCEth94R4jBBpQCQ==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为( )。 未知类型:{'options': ['0', '1', '[tex=1.286x1.143]AcbURnSUksMF5caOSz5CtQ==[/tex]', '0或1'], 'type': 102}