设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,举例说明,“若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值”的逆命题不成立。
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]均为实对称矩阵,则“若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值”的逆命题成立。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为同阶方阵,若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征值。
- 设[tex=2.214x1.214]YsxUk3RpCEL54ROD5kt0RJo8Jg3PZ9YFvmPV4aO5za/jW8pAoxQ3l0yVPiczodW7[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,下列命题中正确的是 未知类型:{'options': ['若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0相似,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]合同', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同\xa0', '若\xa0\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]\xa0合同,则\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与\xa0[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价'], 'type': 102}
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵,则下述命题正确的是( ),且说明理由。 未知类型:{'options': ['若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]等价,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]必相似', '若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]必等价'], 'type': 102}
- 证明定理若矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex],[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有相同的特征多项式,从而有相同的特征值.