欧拉公式正确的是
A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2
B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j)
C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2
D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2
A: cos(x)=(ex+e-x)/2,sin(x)=(ex-e-x)/2
B: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/(2j)
C: cos(x)=(ejx+e-jx)/(2j),sin(x)=(ejx-e-jx)/2
D: cos(x)=(ejx+e-jx)/2,sin(x)=(ejx-e-jx)/2
举一反三
- 【单选题】设y=sin(cos(x)),求 结果为:(本题10.0分) A. cos(cos(x))*cos(x)+ sin(cos(x))*sin(x)^2 B. - cos(cos(x))*cos(x) - sin(cos(x))*sin(x)^2 C. - cos(cos(x))*cos(x)^2 - sin(cos(x))*sin(x)^2 D. - cos(cos(x))*cos(x) ^2- sin(cos(x))*sin(x)
- 设\(z = \int_ { { x^2}}^y { { e^t}\sin t} dt\),则\({z_{xx}=}\) A: \(2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) B: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} - 2{x^2}\cos {x^2}} \right]\) C: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\sin {x^2} + 2{x^2}\cos {x^2}} \right]\) D: \( - 2{e^ { { x^2}}}\left[ {\left( {1 + 2{x^2}} \right)\cos {x^2} + 2{x^2}\sin {x^2}} \right]\)
- 求微分方程[img=634x60]17da653955cf9e7.png[/img]的特解。 ( ) A: sin(2*x)/3 - cos(x) - cos(x)/3 B: sin(2*x)/3 - cos(x) - sin(x)/3 C: cos(2*x)/3 - cos(x) - sin(x)/3 D: sin(2*x)/3 - sin(x) - sin(x)/3
- 函数\(y = { { \sin x} \over x}\)的导数为( ). A: \( { { x\cos x - \sin x} \over { { x^2}}}\) B: \( { { x\cos x + \sin x} \over { { x^2}}}\) C: \( { { x\sin x - \cos x} \over { { x^2}}}\) D: \( { { x\sin x + \cos x} \over { { x^2}}}\)
- $\int {{1 \over {3 + 5\cos x}}} dx = \left( {} \right)$ A: ${1 \over 4}\ln \left| {{{2\cos x + \sin x} \over {2\cos x - \sin x}}} \right| + C$ B: ${1 \over 4}\ln \left| {{{2\cos {x \over 2} + \sin {x \over 2}} \over {2\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ C: $\ln \left| {{{\cos {x \over 2} + \sin {x \over 2}} \over {\cos {x \over 2} - \sin {x \over 2}}}} \right| + C$ D: $\ln \left| {{{\cos x + \sin x} \over {\cos x - \sin x}}} \right| + C$