简支梁的跨中作用一力偶[tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex], 梁的弯曲刚度为[tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]试用积分法求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]截面的转角和[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]截面的挠度。[img=193x116]179d6ed7a075ea4.png[/img]
举一反三
- 简支梁[tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]的弯曲刚度为[tex=2.429x1.214]yqFNVXBZhqkcfiQYZIHmmQ==[/tex]端受力偶[tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]作用。试用积分法求[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]截面转角和[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]截面挠度。[img=197x116]179d6e119963814.png[/img]
- 已知图示各梁[tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]为常量,要求:用积分法求挠度曲线方程及[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]截面的挠度与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]截面的转角。[img=1001x203]179bda26ceb7d0a.png[/img]
- 试用叠加法求图示简支梁跨中截面 [tex=0.786x1.0]2cIKlaur+fRsqCADU2AmeA==[/tex] 处的挠度 [tex=1.0x1.0]YeFwj8+lL+pw3vlQRVTiUg==[/tex]和支座截面 [tex=0.786x1.0]qQ1Bc1R8PtDh4OreriSeGA==[/tex] 的转角 [tex=1.286x1.0]bQ1HVr1Em15umoPSabgOTw==[/tex]。 梁的抗弯刚度 [tex=1.071x1.0]d8Cds5UqM8uqH8U+QXpHKg==[/tex] 为常数。[img=545x413]17a6791e678b856.png[/img]
- 用叠加法计算图 [tex=3.286x1.143]Xt/Q/VDFSz2NhCRCp1nraA==[/tex]所示悬臂梁截面 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的转角和截面 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的挠度。设梁的抗弯刚度[tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]为常量。[img=734x319]17d003b56ce3259.png[/img]
- 根据图所示坐标轴 [tex=2.357x1.0]7fK/cq1TxJ2b5g4iFumlWA==[/tex] 和 [tex=0.929x1.0]ZNN3ycTB/TP3mHbpQm2G8Q==[/tex], 用积分法求梁的挠曲线方程,并确定截面 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的转角及梁的最大挠度。设 [tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex] 为常量。[img=472x207]179748bebb09cf3.png[/img]