求函数[tex=4.571x1.571]WIypPcSiQRMUbuY2aDKc9443Sit1KI/WOAhWm3HDI/c=[/tex]的微分。
[tex=14.071x2.714]FMPXb6w3OCPG44N2ilIuNYWB2lNZQJfsJWwTSxq3RNmPRuLlwzZKvDAwLS+J1RwjY7wc/NVBT7GZDHpvN/srwAAvUPTqerzlKhU3ItCkrBzrhNqJl7PpRqYTQCEXPZs0[/tex]
举一反三
- 求下列曲线的凹凸区间及拐点:[tex=4.571x1.571]WIypPcSiQRMUbuY2aDKc9443Sit1KI/WOAhWm3HDI/c=[/tex].
- 求下列函数的定义域:[tex=4.571x1.571]OM+oowGNf5ps5XpYYElU5iaNnt3Qt61VUcu72ulacIs=[/tex]
- 求下列函数的反函数[tex=4.571x1.571]BrFPsFg7AVVHvRSdBANzdX3rTlR7wkgfNAJA1fgYTEQ=[/tex]
- 求下列函数的全微分(设其可微):(1)[tex=5.429x1.286]S0BFrBqre6Af5Gp+nOGKRA==[/tex];(2)[tex=8.071x1.286]ErRQ9jHNUTcVvKf+dhU+Kg7BMAKqKksqwC9F4wBNmOQ=[/tex];(3)[tex=10.0x1.286]YWYBASUY/nkH9xj3J/TlpSGNivDvLj4wGzpayk93MdyPl1ftqyX23inlZRaPzAVG[/tex];
- 求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]
内容
- 0
若x为自变量t,求[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex],设:[tex=4.571x1.571]VEBjPuCVPL2Zi4+L5hVdoilQ9vbIKjtpES/ICa8XZTk=[/tex]
- 1
利用微分,求下列近似值:(1)[tex=2.571x2.0]1gkPHMmDFl17xiZlURulcg==[/tex](2)[tex=2.429x1.429]USggBAjFomMY4e0NLutPiA==[/tex](3)[tex=2.143x1.214]042jw9WE645b3wxL0waCXw==[/tex](4)[tex=2.786x1.0]zIDxscziz4XQWvCmOgHhvQ==[/tex]
- 2
求下列函数y关于自变量x的二阶微分:[tex=4.5x1.429]kPJz3gYAhU9h1Rl7cUJtrA==[/tex]
- 3
求下列函数y关于自变量x的二阶微分:[tex=3.643x2.357]pSdofl5T9n1ZEvYrF0AJctqaFS6gZ74LY5MlSkGlchg=[/tex]
- 4
求函数微分: [tex=2.786x1.429]Zr3THXNvGpepVUx2F5zCDw==[/tex]