• 2022-06-30
    图[tex=3.643x1.357]RY67yO/FknW+zTOPJiv5qA==[/tex]所示两层刚架,其横梁刚度为无限刚性。设质量集中在各层横梁上,第一、二层的质量为[tex=2.929x1.0]cm7Rj3bGp5JV8/epU1a6Gw==[/tex]。层间侧移刚度均为[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]。试确定刚架水平振动时的自振频率和主振型。[img=694x184]179c82611f09c6b.png[/img]
  •  解 [tex=2.286x1.357]1Lt2KHRLHTMxytdRkMIdxQ==[/tex]求刚度矩阵[tex=1.429x1.357]jjxuFxnCqpLNUl/B97A0Jw==[/tex]和质是矩阵[tex=1.571x1.357]y2ukT/zN5XLtM/gEVj6n/Q==[/tex]。 此刚架振动时只能作水平移动,故只有两个自由度。我们按刚度法来求其自振频率。任 各楼层处附加水平链杆,并分別使各层产生单位位移。由各层的步力平衡条件,可求得各刚度系数,其数值分别如图 [tex=5.5x1.286]AO/VWaYN41IZ1d5hc4uXVqle/uxGuH3Je/VOUz+SjDw=[/tex] 所示。因此,得刚度矩阵为:[tex=8.5x2.786]3hnttkwzOKviRpMtls4GN1Fv/bJdKZISL7PemloueVlxbjXKUGGoAzByq+0g9WFXV/x31cCXT5n6tLKRbVdoU7aHVkarKJ2Y/ndyfW4TFi4=[/tex]质量矩阵为:[tex=7.429x2.786]2cNRGDnAK1lbpiWOJd9aLvYtGfVd4lHg0Ea8pxnoyduBaPosP53UXyi/PnoUa00nkM3voW/0GKIhizZsiQHe6Q==[/tex][tex=1.143x1.357]BEB68bP4vOVk/XYYizw11w==[/tex] 频率分析。令    [tex=3.786x2.143]xkr4VYGEGcWMnGBpJZwe5BZ0erQEOQyno4S3lrqvI6w=[/tex]由式([tex=2.286x1.0]inlZS9h3mORJ7viMTw2W5A==[/tex])知:[tex=14.714x2.786]a/rNyPCzRjJo06RWSU/OFlbKZzlhQMNvl2mWShjP093722mgl+DmsSFjLfJYXzZKpMfQY9WTVIbCeZZO0tu27fMLSl6oHeQGPD5AAjfX1cmMP1XLGbm949rK+JV75NB2MfzBWAymXzfonIE62knVzw==[/tex]展开上面的频率方程,得:[tex=5.786x1.429]8PWkgBilKKzs1fmKnXy3idy9LKN4OktL3RUkHz1t5nc=[/tex]解得两个根为:[tex=17.286x2.643]BZi4y1aR4oszyryT+kFstz6wNOoyWDo6ioXDq7JUQ/N3131Wo2qwJ+SeXZjJyn7lYAiXuBhkX5XMU0W/LrhFlRo8pI7vcB0by8VXZdAg4b3CvhEEBwd7H9gF7ZsGReqh[/tex]则两自振频率为:[tex=21.786x2.786]QkwxzdXbGumj3aJyhtdRQA85o8iKKOjWtTZKjf8NCfe22IdWMWdaVS/TkTP++E1jyM9Vcoe8iqz20DiBTNREBz17iM59928hQrGZkkE0QG1h+l/T/iK9yA2PfQkX/1iwZ3KbrU+f47ntoFEc0DeCw8pP4pbX7gHSEcqelJuLEjUQxFWhwPHIgJ3Oqk+aWI2c[/tex][tex=1.286x1.357]H6tHfFjOZ3ZWdB4qPQ9Ocg==[/tex] 振型分析。由振幅方程 [tex=3.071x1.357]vnGAqgEZ0TmxIuTbvgkCWg==[/tex]得:[tex=15.0x2.786]NeoTBlf1CmkUoMf07Si5dB4KlPMf3a12tOWwf3w0zvYiw5pBhLX+C9KzAIxwNvL1uHNnW0LkJ/dc1rYzL3Ejyvxz/UT+6S79fRmFfM2uYEsVEKW3GVfgPFu9nY6Of0YYuwWoIiH6X8aSoq3LWanDpjsM/Y7ki1p7NQSIFt0of4za5bbP/LNzxIHUF12E2vMNLOc8DjZ9sLDrgFbwQMWh1ZuRZkMztc5oqwIpa6Ki9jqAexR9I6SF1KkSzaxgePac[/tex]则有:  [tex=26.5x3.286]ej7VdvrmuUI/MnmNDwSa/MnZRoTLd8x1ggMv/qvpwggbDUwpmcZVURox2AtG7lB91C5fY255t+6xYHgdPH8esQbfApBmL7KpT/ZwXDgobIkaF/rb9XBx89dHpDqSV20I0ODk04yfmZiTIbE1v4sxjylJOCHtHcGDuYTzLFqEYkVrIq7cOtEnHCxgUk4FLWSjX+HnUsMZqR5lfQdQ+DK7sCCzEUvj0zRNKJ4Vo5OtY/68kMb3oOMOfMLKlvx1YcHhZpQNIpl72rIh4SAnDOii6Q==[/tex][tex=28.071x3.286]YPxrk25Xe4kjL7FJW8VgKOTaGFGvVFcrX0wfvsQh+LfwQKYN9kJA+xMQDAXbPkmCRjW7+gli7agGel3/qw6fmp+i93JG8zdy1JK2RbUE76Qhwl1xxamRMKzhoIU8vzqTlzpv4G/A9lojkewfLwt81V1WX2KBTZrSqjsoWOsR628G9ulYgNMo25V3AfGGQHkHehrfJpI+DWKRT7zie0KTpLfIW7uo+E7jZRNrR0QdA2nZHgK1y4DOwbks2kMMt4+x3I6hyvuofG4qnCCyiTbvTw==[/tex]两个振型的大致形状如图[tex=5.143x1.357]+GuC6Np5wjmi+la7amLsdQ==[/tex]所示。

    举一反三

    内容

    • 0

      图示 2 跨 2 层刚架, 梁的线刚度 [tex=0.714x1.214]DLBE9sbNUyvQez1BkENcNLhbyut36/WBGG1ATxORpLE=[/tex], 柱的线刚度 [tex=0.643x1.214]DLBE9sbNUyvQez1BkENcNGHMCN7S1/Lu978S+XEBKzg=[/tex] 。在以下三种情况下(均为杆线刚度相对值):(1) [tex=4.286x1.214]DLBE9sbNUyvQez1BkENcNMK0ULdBSCCQvS7z/i7yPa5/L7R85cQ0i5O9Ai1LKhP04HLEHRMx1Jl9AUCdxRTzcQ==[/tex];(2) [tex=5.071x1.214]DLBE9sbNUyvQez1BkENcNMK0ULdBSCCQvS7z/i7yPa5/L7R85cQ0i5O9Ai1LKhP0SayWdZLWAhk6P0f1NbHtbw==[/tex](3)[tex=4.786x1.214]DLBE9sbNUyvQez1BkENcNJ6nElUOQcUDypRSKaUgJMWF4Xk6tFa5siR5wLEIbUPK8vqNQn84ypyKqDmI5q0nvw==[/tex] 。试求:(a)忽略结点侧移时, 刚架的弯矩图。(b) 考虑结点侧移时, 刚架的弯矩图。(c)比较以上三种情况下, 忽略结点侧移与考虑结点侧移内力的差别。[img=468x375]17cfae124986a96.png[/img]

    • 1

      试求图示刚架的自振频率及主振型。各杆[tex=1.214x1.0]s9Je1M5xVQ90RVSHJTCpMA==[/tex]均为同一常数。[img=229x249]17a7be6724b2d85.png[/img]

    • 2

      刚架的[tex=4.571x1.286]NSKjTj7psZYdOS6Y0a7ZyA==[/tex],横梁温度均为升高[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex],两柱温度不变。试绘其弯矩图。[img=342x276]179d158918e1afe.png[/img]

    • 3

      如题[tex=3.643x1.357]c6+a+tVZleozxkBKnBBAqA==[/tex]图所示,为使梁截面[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的弯矩为零,试[br][/br]问弹性支座刚度[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]应取多大?并求此时[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]点挠度。[img=329x366]179db5f7d3ced74.png[/img]

    • 4

      [img=266x294]179ac054a133bc7.png[/img][tex=1.214x1.0]aXJNSgwe9sYfky/Vv9M4JQ==[/tex]试计算题图所示刚架截面[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的水平与铅垂位移。设弯曲刚度为常数。