函数f(x)在[a,b]上可积,则对任意的[img=65x25]18038394b8a5739.png[/img],f(x)在[a,c]上可积
对
举一反三
- 函数f(x)在[a,b]上可积,则对任意的[img=65x25]1802dc825999131.png[/img],f(x)在[a,c]上可积
- 函数f(x)在[a,b]上可积,则对任意的[img=65x25]18036db6a08b0d4.png[/img],f(x)在[a,c]上可积
- 若函数f(x)在区间[a,b]上可积,函数g(x)在区间[a,c]上可积,且[img=93x21]17e0a6f1e01da1c.png[/img],则[img=167x39]17e0a6f1e88c67f.png[/img]
- 设函数f(x)在[a,b]上可积,且[img=104x39]17e0a6f0cc61b64.png[/img],则f(x)在[a,b]上恒等于零
- 若f(x)在[a,b]上可积,则g(x))在[a,b]上不可积,则f(x)+g(x)在[a,b]上一定不可积。()
内容
- 0
如果$f(x)$在$[a,b]$上可积,则$f^2(x)$在$[a,b]$上也可积。
- 1
如果$|f(x)|$在$[a,b]$上可积,则由于$f(x)\leq |f(x)|$,可知$f(x)$在$[a,b]$上也可积。
- 2
若f(x)在[a,b]上有界,则f(x)在[a,b]上可积。
- 3
如果函数$f(x)$在$[0,1]$上可积,则任取区间$[a,b]\subseteq[0,1]$,都有$f(x)$在区间$[a,b]$上可积。
- 4
[a,b]上的可积函数f(x)不恒等于g(x),则[img=190x52]1802dc823ce4e0e.png[/img]