• 2022-06-27
    四边简支的矩形薄板, 如题[tex=2.286x1.143]7a0IU2tiYqiBE2mItsg8HA==[/tex] 图所示, 边长为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex],受有荷载[tex=7.857x2.143]hyu3ZYL0V9pBVIE2yem2F9F8uElAK3qhCawTID5I9xHhaTfitlQ5TPSxDI7RuWmuPEPDVn85/T7QzdEcgqQ07g==[/tex]试证 [tex=8.214x2.143]NLU9FBEQoKogJdPAuFxNhJNDasHwZr/+SO5ih/7KkB8bglYCueJ0NrkuQ8AXRu26[/tex]能满足一切条件,并求出挠度、弯矩 和反力[img=199x195]17cf2fb94bce63d.png[/img]
  • (1)沿着简支边[tex=12.071x1.286]WAoK8hi0AvPItvGO7HHNDi6myBeKQmqYwOi8P0vKU8M=[/tex][tex=2.714x1.357]9g4qhbxOCALhc4ba0lxW/g==[/tex] 和[tex=4.071x1.357]N71yi+rikhq4C3ydXYIcoQ==[/tex] 薄板的挠度[tex=0.786x0.786]RaAINhYHT2QFWQ2tWIaawg==[/tex] 等于零,挠度 [tex=8.214x2.143]NLU9FBEQoKogJdPAuFxNhJNDasHwZr/+SO5ih/7KkB8bglYCueJ0NrkuQ8AXRu26[/tex]满足四个边的 边界䇣件[tex=10.643x3.214]rZM5/OPAdr7aX+kNl9iwpBKel7V2I9yc6UCGbrPOaqq2Hy2XwzBhzcZ5G9C5bvAC4g8wrUEeaD+WPRC6frIseXe1NZerQHOWtAymBu6ZrsVQWeAkbffKLcCMYNsRTGIHlrd+hUm2pfYg21iDC/a6XA==[/tex]对于荷载 [tex=7.857x2.143]Bbw/6314xbr9phiEss35uiSuM9v9rl63eTpQdSX/zGTHnWQpPibbQhEWUudSVJXntQrcDI2V2zLHRdXz25+PiA==[/tex], 将挠度表达式代人方程 [tex=10.143x2.143]sZbJnO85R0fgqJiMTe5DfpPOq7auZ7QGNPL/K0uNzA0q2Idag2bnif8lw8pXaAByclxsMD5x3yBIs6UtgarCOLmS+8D8+SZlsDbhRhbkIkY=[/tex], 即[tex=27.857x2.786]4KEFkthkATWkKWT0yGUFOQ9rS47uBQFmqge4P97f0u0GaMSlsiw10GgegU50sUg+luf5pq5tDIYn8cxgo5xMNH24gvhBT3frO6ZorxvYSmgp38TGcXDE0iF8uD05oZINi7xZudQ52OLu3yw1SvQjLA+/r+Rwd7qTdPJDi0HhBPZsr5tEx97g5Ce+2HnJ1ZDnNAnlPy8UwsaLncnMdhapKzK+aooFBBMM8g+SjgzAT05MwP7oYUaaTRmsDIXeV1EL[/tex]解得[tex=8.0x3.714]TkAtQB2PliNdzAA5m8o6GuI4aKdmIYxG5YLfCHbjPT3sMniOX84Qhxz4Ozhc4KR9Ye0VLyLMTf8Z63IstfVI31sMwltKLzBF3gOF1/kz4rg=[/tex](2)求最大挠度和最大弯矩,挠度为[tex=13.929x3.714]BrKO9ca/08G2qfsytUHu/tN7aMIZvFL3ZySrwWdU8JQVSPPaqukwU7v1wq7DcFU/1J9DaegqKsLQ/LOk/fPbF9+INoY81rb5PrR+oC39W4dTeVRsTYYscmvUNkfhFvQUxeix1YchE5AGeoEyHEM+M/De1rMrX/QkKFb0S7zlQVU=[/tex]最大挠度值为[tex=9.143x3.714]knhR8hVLbjUbY+J5qYq3ZZvxZmJAyidBgMehlf3uXGmWXQz6UiYoAOmQFB5dE3Th0wMZnagIEQDuMMNT3UeNXEwexrp6ammPoyZsaRCgHzxqHZWcBO9zd1b1Le6/+xy1[/tex]根据教材中式 [tex=3.5x1.357]OwrtVf9Pu6pOqosqmwgFZw==[/tex], 得内力[tex=26.714x6.071]qeiYnKXLEhyhuGRg8yLtr0iDhfGUnH3a1ViXssbZjo68srsy4FCOOeSY/DQyrYoKsUyKhwJezy56CVLmxmZN8c8FUK5Fc/mUBLSQZt74r4TEzhNq6I7yKaoHi49eDKdILp+Bt8x9sAGYtRKjZ8coQl6B1uK9pmlCbY82RFarXcX8LpuKQR6akFBMOUgGoUL51Lgpd/rOgHC9qhYl//qchq1hfomN9/kxOOIg2DkglldLYlqoF0omU7JttdsmFcsfibHIbwkgp4yFa6gig7vzjYQ0Q36gMgL6QbdRbwPCH45/4X3DoiEnjXBYG3M5QCJ5VkYbD26bd9ZJ0AvLvg11mZQhEVviMd3l7Ht7T6aNd+JEDOeAd0HCDeHVGBPEHEIG67YijrRJKIESJyk82W2RNfWAmeapc03Zi5Bl9SkzH55pIpnG5OPjGFT5zzCEIwveB+868lmeqvxavdRp4C6J0YT0ZATpcK1Cc14Y5sQNXNTjXZtZLkARK597nZunogQxIHw1zaYtoqa0+KoyJdL/htuxirnT7cx9GPBE3UuxJrlP/ECSjUIv6/z6euIxkApj19oU/NR6+IHDIkDljN/0dg==[/tex]最大弯矩为[tex=11.286x4.429]57Mp90AC53Wy2x2xXt9nQcR5A7ugOCXNEymN9OTPIJvgOjXa6MoI1qFrMUhySj+8G++VBX0jaifndrdR8LO4djgUj3t4r/Rf8XgzNMK80TS8UkkarB/UjY+k49C/hNEaMtImrOO+csL950+OxbHbmF3k8MYRPGKv0Ox0l0i0iXy3tIzOCBvU+hL/x1GxXlEo02vpfxElAGPEsDu0FLJiDw==[/tex](3)角点反力公式为[tex=31.5x3.714]HnoU4s57YL9WKEX1t/j1zhx3z8we2DJc62CzOwjl5prySoE3rNjQNPoyRpxMEmm86vK82bTskFnmnHL+iMpltkhdtHv5E6o2Y/b2FVGuIcohvID+fK/ltMoXnZDFYbbk6VS/khkW+6LTl21oet4JU6ChsTtfyF3lGm3LZBBYfzVsVs5W/8HvEHMByfoaE3eVJKQXvFtiLIfsRutGuDCSUrvuD7WnsvbPVnb7tQ3CEZ14QDD6EAr6i8NWSwmy1HiaCThMdRGGcGklKKsKiUkIVMygzzOchxnY8I92NEIBTG2B+VOfEc2NPkGrauVmxhZTZiEaYRQOZ4jTgK+rBBXyzjHH+X/to1cSNvF0Hjwbhus=[/tex]角点反力的正负方向梖据扭矩的正负方向规定来确定。在题 [tex=2.286x1.143]7a0IU2tiYqiBE2mItsg8HA==[/tex] 图中, [tex=6.929x1.214]LWAwc2VgYeDFXGl2tve94CsSwVlTyoLAWfjuefGRG6s=[/tex](向下), [tex=6.143x1.214]ZwCjYRCCunFuXSipXU+9sglQ6RRX4YF/iTXhsvbAhlU=[/tex] (向下)。急的分布剪力为[tex=6.643x2.643]A6Re0N89x8sg7rkcXFzEuoNOcBxvnx3i32n5Ncml+Q3VrjRBEPi+CbrCzmiv8WzwIW4Ol+LH7mdhCOCxc25/83OqOaOwYXGLOfsmk4Et7Ho=[/tex][tex=21.571x5.786]qeiYnKXLEhyhuGRg8yLtryrJQE5eyrB32325S7JD0D/BcGJYdWxniJml5s4H8QeEr3kWYGgrPSf9r34HnJbLBHOtyG7FCQMbiDQ3Vn0l7CflZDgsLilZKXFpzwNGghbZyManVrjr0vxucLnRfe6RR8C5KRP72ZW34PSE+ThpBpPRqkkCYv1YUAPeX0su1ds8g9D3YmQS285lG+t94fjm+T7+sQUZvF5GrvwupT0gMkxVnASCehGDfARVTq76uK7QmhDDlb5ocSUw7tHG6BK6SuP+MPw3w7JDaBQmPWYasDS+UepIyLLrmPZvsLAgfzspC9AfKrMnPp/n9h324tjGMPn3tGXLhRVcDO2a7sBmP0rm5JiBKCMcosJ36f/fDWSy[/tex]所以[tex=12.143x4.429]abAq3AKSwpeK0JvvS1bzUjcJBrZaEHqChWe2bT1mZTEB/P3+e2ugYNnZn4sS8A6/XNhKqIKEpzPV03LHuTAgL40lZaDieusYjZDQFxcmAc66zp197xCKJ2uPntBvooSiNFfDc8ojXas8Yd538/1yxgOY8chkwzqrL1t6aNMU0GeIkUANXUpTWIv1wPz7Rn1k08A2jpwaaIdN22WWB7QXrw==[/tex]

    内容

    • 0

      输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

    • 1

      下面是图的拓扑排序的是?(多选)[img=340x240]1802faef6ebcc2a.png[/img] A: 2 8 0 7 1 3 5 6 4 9 10 11 12 B: 2 8 7 0 6 9 11 12 10 1 3 5 4 C: 8 2 7 3 0 6 1 5 4 9 10 11 12 D: 8 2 7 0 6 9 10 11 12 1 3 5 4

    • 2

      \(二次型f(x)=x^{T}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}x的秩为\)

    • 3

      【阅读理解(选择)/完型填空】基于以下描述回答 1-2 题: 下表是 9 名评委对 10 名学生的毕业设计进行等级评定结果: 评委 A B C D E F G H I J 1 1 2 4 3 9 6 5 8 7 10 2 1 4 2 5 6 7 3 10 8 9 3 1 3 4 5 2 8 9 6 10 7 4 1 3 4 5 2 6 10 8 7 9 5 1 9 2 5 6 3 4 8 10 7 6 1 4 9 2 5 6 7 3 10 8 7 1 3 5 10 2 6 9 7 8 4 8 1 3 5 7 6 4 8 10 2 9 9 1 2 8 4 9 6 3 7 5 10

    • 4

      (1)5 7 9 11() () ()()(2)26 23 20 17()() 8()(3)1 2 4 7 11() () 29(4)7 3 8 3 9 3()()(5)1 1 2 3 5 8()()